@article{RM_2020_75_3_a3,
author = {V. P. Palamodov},
title = {On inversion of the {Lagrange{\textendash}Dirichlet} theorem and instability of conservative systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {495--508},
year = {2020},
volume = {75},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a3/}
}
TY - JOUR AU - V. P. Palamodov TI - On inversion of the Lagrange–Dirichlet theorem and instability of conservative systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 495 EP - 508 VL - 75 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a3/ LA - en ID - RM_2020_75_3_a3 ER -
V. P. Palamodov. On inversion of the Lagrange–Dirichlet theorem and instability of conservative systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 495-508. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a3/
[1] Zh. Lagranzh, Analiticheskaya mekhanika, v. 1, 2, Klassiki estestvoznaniya, Gostekhizdat, M.–L., 1950, 594 s., 440 pp.; J. L. LaGrange, Mécanique analytique, v. 1, 2, La Veuve Desaint, Paris, 1788–1789; J.-L. Lagrange, Analytical mechanics, Camb. Libr. Collect., Cambridge Univ. Press, Cambridge, 2010, 444 pp., 392 СЃ. | Zbl
[2] P. Hagedorn, “Die Umkehrung der Stabilitätssätze von Lagrange–Dirichlet und Routh”, Arch. Ration. Mech. Anal., 42 (1971), 281–316 | DOI | MR | Zbl
[3] G. Lejeune Dirichlet, “Über die Stabilität des Gleichgewichts”, J. Reine Angew. Math., 1846:32 (1846), 85–88 | DOI | MR | Zbl
[4] A. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Dokt. diss., Izd-vo Kharkovsk. matem. o-va, Kharkov, 1892, xi+250 pp. ; Классики РμСЃС‚Рμствознания, ГостРμС...издат, Рњ.–Р›., 1950, 471 СЃ. ; A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 СЃ. | Zbl | MR | Zbl | MR | Zbl
[5] A. M. Liapounoff, “Sur l'instabilité de l'équilibre dans certains cas où la fonction de forces n'est pas un maximum”, J. Math. Pures Appl. (5), 3 (1897), 81–94 | Zbl
[6] P. Appell, Traité de mécanique rationnelle, v. IV, fasc. 1, Figures d'équilibre d'une masse liquide homogène en rotation, Gauthier-Villars, Paris, 1932, viii+342 pp. | Zbl
[7] P. Painlevé, “Sur la stabilité de l'équilibre”, C. R. Acad. Sci. Paris, 138 (1904), 1555–1557 | Zbl
[8] S. Earnshaw, “On the nature of the molecular forces which regulate the constitution of the luminiferous ether”, Trans. Camb. Philos. Soc., 7 (1842), 97–112
[9] R. Weinstock, “On a fallacious proof of Earnshaw's theorem”, Amer. J. Phys., 44:4 (1976), 392–393 | DOI
[10] A. Kneser, “Studien über die Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtslagen. Erster Aufsatz.”, J. Reine Angew. Math., 1895:115 (1895), 308–327 ; Zweiter Aufsatz., 1897:118 (1897), 186–223 | DOI | MR | Zbl | DOI | MR | Zbl
[11] J. Hadamard, “Sur certaines propriétés des trajectoires en dynamique”, J. Math. Pures. Appl. (5), 3 (1897), 331–387 | Zbl
[12] P. Painlevé, “Sur les positions d'équilibre instable”, C. R. Acad. Sci. Paris, 125 (1897), 1021–1024 | Zbl
[13] E. J. Routh, A treatise on dynamics of a particle: with numerous examples, Cambridge Univ. Press, Cambridge, 1898, xi+417 pp. | MR | Zbl
[14] G. Hamel, “Über die Instabilität der Gleichgewichtslage eines Systems von zwei Freiheitsgraden”, Math. Ann., 57:4 (1903), 541–553 | DOI | MR | Zbl
[15] P. Bohl, “Über die Bewegung eines mechanischen systems in der Nähe eines Gleichgewichtslage”, J. Reine Angew. Math., 1904:127 (1904), 179–276 | DOI | MR | Zbl
[16] L. Silla, “Sulla instabilità dell' equilibrio di un sistema materiale in posizioni non isolate”, Atti Accad. Naz. Lincei. Rend. (5), 17:1 (1908), 347–355 | Zbl
[17] A. Wintner, The analytical foundations of celestial mechanics, Princeton Math. Ser., 5, Princeton Univ. Press, Princeton, NJ, 1941, xii+448 pp. | MR | Zbl | Zbl
[18] N. G. Chetaev, “O neustoichivosti ravnovesiya v nekotorykh sluchayakh, kogda funktsiya sil ne est maksimum”, PMM, 16:1 (1952), 89–93 ; Erratum, 18 (1954), 512 | MR | Zbl
[19] W. T. Koiter, “On the instability of equilibrium in the absence of a minimum of the potential energy”, Nederl. Akad. Wetensch. Proc. Ser. B, 68 (1965), 107–1133 | MR | Zbl
[20] W. Hahn, Stability of motion, Grundlehren Math. Wiss., 138, Springer-Verlag, New York, 1967, xi+446 pp. | DOI | MR | Zbl
[21] L. Salvadori, “Sulla stabilità del movimento”, Matematiche (Catania), 24 (1969), 218–239 | MR | Zbl
[22] V. P. Palamodov, “Stability of equilibrium in a potential field”, Funct. Anal. Appl., 11:4 (1977), 277–289 | DOI | MR | Zbl
[23] S. D. Taliaferro, “Stability for two dimensional analytic potentials”, J. Differential Equations, 35:2 (1980), 248–265 | DOI | MR | Zbl
[24] S. D. Taliaferro, “An inversion of the Lagrange–Dirichlet stability theorem”, Arch. Ration. Mech. Anal., 73:2 (1980), 183–190 | DOI | MR | Zbl
[25] V. V. Kozlov, “Equilibrium instability in a potential field, taking account of viscous friction”, J. Appl. Math. Mech., 45:3 (1981), 417–418 | DOI | MR | Zbl
[26] M. Laloy, K. Peiffer, “On the instability of equilibrium when the potential has a non-strict local minimum”, Arch. Ration. Mech. Anal., 78 (1982), 213–222 | DOI | MR | Zbl
[27] V. V. Kozlov, “A conjecture on the existence of asymptotic motions in classical mechanics”, Funct. Anal. Appl., 16:4 (1982), 303–304 | DOI | MR | Zbl
[28] V. V. Kozlov, “Asymptotic solutions of equations of classical mechanics”, J. Appl. Math. Mech., 46:4 (1982), 454–457 | DOI | MR | Zbl
[29] V. V. Kozlov, V. P. Palamodov, “On asymptotic solutions of the equations of classical mechanics”, Soviet Math. Dokl., 25 (1982), 335–339 | MR | Zbl
[30] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl
[31] M. Sofer, “On the inversion of the Lagrange–Dirichlet stability theorem – mechanical and generalized systems”, Z. Angew. Math. Phys., 34:1 (1983), 1–12 | DOI | MR | Zbl
[32] V. V. Kozlov, “On the stability of equilibria of nonholonomic systems”, Soviet Math. Dokl., 33:3 (1986), 654–656 | MR | Zbl
[33] V. V. Kozlov, “Asymptotic motions and the inversion of the Lagrange–Dirichlet theorem”, J. Appl. Math. Mech., 50:6 (1986), 719–725 | DOI | MR | Zbl
[34] V. Moauro, P. Negrini, “On the inversion of the Lagrange–Dirichlet theorem”, Differential Integral Equations, 2:4 (1989), 471–478 | MR | Zbl
[35] A. N. Kuznetsov, “Existence of solutions entering at a singular point of an autonomous system having a formal solution”, Funct. Anal. Appl., 23:4 (1989), 308–317 | DOI | MR | Zbl
[36] S. D. Taliaferro, “Instability of an equilibrium in a potential field”, Arch. Ration. Mech. Anal., 109:2 (1990), 183–194 | DOI | MR | Zbl
[37] C. Maffei, V. Moauro, P. Negrini, “On the inversion of the Lagrange–Dirichlet theorem in a case of nonhomogeneous potential”, Differential Integral Equations, 4:4 (1991), 767–782 | MR | Zbl
[38] Z. Wiener, “Instability with two zero frequencies”, J. Differential Equations, 103:1 (1993), 58–67 | DOI | MR | Zbl
[39] M. Brunella, “Instability of equilibria in dimension three”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1345–1357 | DOI | MR | Zbl
[40] M. V. P. Garcia, F. A. Tal, “Stability of equilibrium of conservative systems with two degrees of freedom”, J. Differential Equations, 194:2 (2003), 364–381 | DOI | MR | Zbl
[41] V. V. Kozlov, D. V. Treschev, “Instability, asymptotic trajectories and dimension of the phase space”, Mosc. Math. J., 18:4 (2018), 681–692 | MR | Zbl
[42] J. M. Burgos, E. Maderna, M. Paternain, A note on Lyapunov instability in Newtonian dynamics, 2019, 8 pp., arXiv: 1906.11962v1