Quadratic conservation laws for equations of mathematical physics
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 445-494
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Linear systems of differential equations in a Hilbert space are considered that admit a positive-definite quadratic form as a first integral. The following three closely related questions are the focus of interest in this paper: the existence of other quadratic integrals, the Hamiltonian property of a linear system, and the complete integrability of such a system. For non-degenerate linear systems in a finite-dimensional space essentially exhaustive answers to all these questions are known. Results of a general nature are applied to linear evolution equations of mathematical physics: the wave equation, the Liouville equation, and the Maxwell and Schrödinger equations.
Bibliography: 60 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
linear systems, Hilbert space, Hamiltonian system, quadratic invariants, equations of mathematical physics.
Mots-clés : Poisson bracket
                    
                  
                
                
                Mots-clés : Poisson bracket
@article{RM_2020_75_3_a2,
     author = {V. V. Kozlov},
     title = {Quadratic conservation laws for equations of mathematical physics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {445--494},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/}
}
                      
                      
                    TY - JOUR AU - V. V. Kozlov TI - Quadratic conservation laws for equations of mathematical physics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 445 EP - 494 VL - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/ LA - en ID - RM_2020_75_3_a2 ER -
V. V. Kozlov. Quadratic conservation laws for equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 445-494. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/
