Mots-clés : Poisson bracket
@article{RM_2020_75_3_a2,
author = {V. V. Kozlov},
title = {Quadratic conservation laws for equations of mathematical physics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {445--494},
year = {2020},
volume = {75},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/}
}
V. V. Kozlov. Quadratic conservation laws for equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 445-494. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/
[2] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1982, xvi+416 pp. | MR | MR | Zbl | Zbl
[3] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl
[4] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl
[5] V. M. Lakhadanov, “On stabilization of potential systems”, J. Appl. Math. Mech., 39:1 (1975), 45–50 | DOI | MR
[6] R. M. Bulatovich, “The stability of linear potential gyroscopic systems when the potential energy has a maximum”, J. Appl. Math. Mech., 61:3 (1997), 371–375 | DOI | MR | Zbl
[7] V. V. Kozlov, “Stabilization of the unstable equilibria of charges by intense magnetic fields”, J. Appl. Math. Mech., 61:3 (1997), 377–384 | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zen'kovich, “A class of exact algebraic localized solutions of the multidimensional wave equation”, Math. Notes, 88:6 (2010), 894–897 | DOI | DOI | MR | Zbl
[9] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl
[10] A. Wintner, “On the linear conservative dynamical systems”, Ann. Mat. Pura Appl., 13:1 (1934), 105–112 | DOI | MR | Zbl
[11] J. Williamson, “On the algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR | Zbl
[12] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl
[13] H. Koçak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl
[14] A. B. Zheglov, D. V. Osipov, “On first integrals of linear Hamiltonian systems”, Dokl. Math., 98:3 (2018), 616–618 | DOI | DOI | Zbl
[15] A. B. Zheglov, D. V. Osipov, “Lax pairs for linear Hamiltonian systems”, Siberian Math. J., 60:4 (2019), 592–604 | DOI | DOI | Zbl
[16] V. V. Kozlov, “Multi-Hamiltonian property of a linear system with quadratic invariant”, St. Petersburg Math. J., 30:5 (2019), 877–883 | DOI | MR | Zbl
[17] D. V. Treshchev, A. A. Shkalikov, “On the Hamiltonian property of linear dynamical systems in Hilbert space”, Math. Notes, 101:6 (2017), 1033–1039 | DOI | DOI | MR | Zbl
[18] P. A. M. Dirac, “Generalized Hamiltonian dynamics”, Canad. J. Math., 2 (1950), 129–148 | DOI | MR | Zbl
[19] V. V. Kozlov, Dynamical systems X. General theory of vortices, Encyclopaedia Math. Sci., 67, Springer-Verlag, Berlin, 2003, viii+184 pp. | MR | MR | Zbl | Zbl
[20] M. A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, M., 2003, 303 pp.
[21] V. N. Grebenev, S. B. Medvedev, “Gamiltonova struktura dlya dvumernykh lineinykh uravnenii teorii uprugosti”, Vychislitelnye tekhnologii, 20:5 (2015), 53–64 | Zbl
[22] A. Sommerfeld, Elektrodynamik, Vorlesungen über theoretische Physik, 3, Wiesbaden, Dieterichsche Verlagsbuchhandlung, 1949, xvi+376 pp. | Zbl
[23] V. V. Kozlov, “Linear systems with quadratic integral and complete integrability of the Schrödinger equation”, Russian Math. Surveys, 74:5 (2019), 959–961 | DOI | DOI | MR | Zbl
[24] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, 2-e ispr. i dop. izd., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 728 pp.
[25] N. Bourbaki, Éléments de mathématique. I. Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire). Ch. 1: Dérievés. Ch. 2: Primitives et intégrales. Ch. 3: Fonctions élémentaires, Actualités Sci. Indust., 1074, 2-ème éd., Hermann, Paris, 1958, 184 pp. | MR | MR | Zbl
[26] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[27] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[28] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp. | MR | Zbl
[29] M. G. Krein, Lektsii po teorii ustoichivosti reshenii differentsialnykh uravnenii v banakhovom prostranstve, In-t matem. AN Ukr. SSR, Kiev, 1964, 186 pp. | MR
[30] W. Thomson, P. G. Tait, Treatise on natural philosophy, v. 1, Cambridge Library Collection, Reprint of the 1883 original, Cambridge Univ. Press, Cambridge, 2009, xvii+508 pp. | Zbl
[31] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xiv+390 pp. | MR | MR | Zbl | Zbl
[32] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl | Zbl
[33] V. B. Berestetzki, E. M. Lifschitz, L. P. Pitajewski, Lehrbuch der theoretischen Physik, v. IVa, Relativistische Quantentheorie (erste Teil), Akademie-Verlag, Berlin, 1970, xvii+464 pp. | MR | MR | Zbl | Zbl
[34] V. V. Kozlov, “Phenomena of nonintegrability in Hamiltonian systems”, Proceedings of the international congress of mathematicians (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, 1161–1170 | MR | Zbl
[35] N. G. Moshchevitin, “Existence and smoothness of the integral of a Hamiltonian system of a certain form”, Math. Notes, 49:5 (1991), 498–501 | DOI | MR | Zbl
[36] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. 3, Theory of differential equations, Academic Press, New York–London, 1967, x+222 pp. | MR | MR | Zbl | Zbl
[37] I. Prigogine, Non-equilibrium statistical mechanics, Monographs in Statistical Physics and Thermodynamics, I, Interscience Publishers John Wiley Sons, Inc., New York–London, 1962, viii+319 pp. | MR | Zbl | Zbl
[38] I. M. Gelfand, A. G. Kostyuchenko, “O razlozhenii po sobstvennym funktsiyam differentsialnykh i drugikh operatorov”, Dokl. AN SSSR, 103:3 (1955), 349–352 | MR | Zbl
[39] Yu. M. Berezanskii, “O razlozhenii po sobstvennym funktsiyam obschikh samosopryazhennykh differentsialnykh operatorov”, Dokl. AN SSSR, 108:3 (1956), 379–382 | MR | Zbl
[40] R. D. Richtmyer, Principles of advanced mathematical physics, v. I, Texts Monogr. Phys., Springer-Verlag, New York–Heidelberg, 1978, xv+422 pp. | MR | MR | Zbl | Zbl
[41] A. N. Kolmogorov, “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl
[42] V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. Math., 78:4 (2014), 744–757 | DOI | DOI | MR | Zbl
[43] L. I. Sedov, Mechanics of continuous media, v. 2, Ser. Theoret. Appl. Mech., 4, World Sci. Publ., River Edge, NJ, 1997 | MR | MR | Zbl | Zbl
[44] I. S. Arzhanykh, Obraschenie volnovykh operatorov, Izd-vo AN Uzb. SSR, Tashkent, 1962, 164 pp. | MR
[45] J. L. Anderson, P. G. Bergman, “Constraints in covariant field theories”, Phys. Rev. (2), 83:5 (1951), 1018–1025 | DOI | MR | Zbl
[46] G. Vilasi, Hamiltonian dynamics, World Sci. Publ., River Edge, NJ, 2001, xvi+440 pp. | DOI | MR | Zbl
[47] L. D. Faddeev, “What is complete integrability in quantum mechanics”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 83–90 | DOI | MR | Zbl
[48] N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766 | DOI | DOI | MR | Zbl
[49] D. V. Treshchev, “Quantum observables: an algebraic aspect”, Proc. Steklov Inst. Math., 250 (2005), 211–244 | MR | Zbl
[50] W. Miller, Jr., S. Post, P. Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A, 46:42 (2013), 423001, 97 pp. | DOI | MR | Zbl
[51] H.-J. Stöckmann, Quantum chaos. An introduction, Cambridge Univ. Press, Cambridge, 1999, x+368 pp. | DOI | MR | Zbl
[52] G. M. Zaslavsky, “Stochasticity in quantum systems”, Phys. Rep., 80:3 (1981), 157–250 | DOI | MR
[53] J. Hietarinta, “Quantum integrability is not a trivial consequence of classical integrability”, Phys. Lett. A, 93:2 (1982/83), 55–57 | DOI | MR
[54] B. Eckhardt, “Quantum mechanics of classically non-integrable systems”, Phys. Rep., 163:4 (1988), 205–297 | DOI | MR
[55] L. E. Reichl, The transition to chaos. Conservative classical systems and quantum manifestations, Inst. Nonlinear Sci., 2nd ed., Springer-Verlag, New York, 2004, xviii+675 pp. | DOI | MR | Zbl
[56] I. V. Volovich, “Complete integrability of quantum and classical dynamical systems”, $p$-Adic Numbers Ultrametric Anal. Appl., 11:4 (2019), 328–334 | DOI | MR | Zbl
[57] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. III, Quantenmechanik, Akademie-Verlag, Berlin, 1966, xiv+638 pp. | MR | MR
[58] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, IL, M., 1960, 278 pp. ; С‚. 2, 1961, 555 СЃ. ; E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, С‚. 1, Clarendon Press, Oxford, 1946, 175 СЃ. ; v. 2, 1958, xi+404 pp. | MR | Zbl | Zbl | MR | Zbl | MR | Zbl
[59] V. V. Kozlov, D. V. Treshchev, “Polynomial conservation laws in quantum systems”, Theoret. and Math. Phys., 140:3 (2004), 1283–1298 | DOI | DOI | MR | Zbl
[60] V. V. Kozlov, D. V. Treshchev, “Conservation laws in quantum systems on a torus”, Dokl. Math., 70:2 (2004), 807–810 | MR
[61] V. V. Kozlov, “Topological obstructions to the existence of a quantum conservation laws”, Dokl. Math., 71:2 (2005), 300–302 | MR | Zbl