Quadratic conservation laws for equations of mathematical physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 445-494

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear systems of differential equations in a Hilbert space are considered that admit a positive-definite quadratic form as a first integral. The following three closely related questions are the focus of interest in this paper: the existence of other quadratic integrals, the Hamiltonian property of a linear system, and the complete integrability of such a system. For non-degenerate linear systems in a finite-dimensional space essentially exhaustive answers to all these questions are known. Results of a general nature are applied to linear evolution equations of mathematical physics: the wave equation, the Liouville equation, and the Maxwell and Schrödinger equations. Bibliography: 60 titles.
Keywords: linear systems, Hilbert space, Hamiltonian system, quadratic invariants, equations of mathematical physics.
Mots-clés : Poisson bracket
@article{RM_2020_75_3_a2,
     author = {V. V. Kozlov},
     title = {Quadratic conservation laws for equations of mathematical physics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {445--494},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Quadratic conservation laws for equations of mathematical physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 445
EP  - 494
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/
LA  - en
ID  - RM_2020_75_3_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Quadratic conservation laws for equations of mathematical physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 445-494
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/
%G en
%F RM_2020_75_3_a2
V. V. Kozlov. Quadratic conservation laws for equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 445-494. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a2/