Krylov--Bogolyubov averaging
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified approach to the classical Krylov–Bogolyubov averaging method is presented. It was developed recently for studying partial differential equations, enables one to treat Lipschitz perturbations of linear systems with purely imaginary spectrum, and may be generalized to the case of systems of PDEs with small non-linearities. Bibliography: 10 titles.
Keywords: Krylov–Bogolyubov method, locally Lipschitz vector-field, Hamiltonian equations.
@article{RM_2020_75_3_a1,
     author = {W. Jian and S. B. Kuksin and Y. Wu},
     title = {Krylov--Bogolyubov averaging},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {427--444},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/}
}
TY  - JOUR
AU  - W. Jian
AU  - S. B. Kuksin
AU  - Y. Wu
TI  - Krylov--Bogolyubov averaging
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 427
EP  - 444
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
LA  - en
ID  - RM_2020_75_3_a1
ER  - 
%0 Journal Article
%A W. Jian
%A S. B. Kuksin
%A Y. Wu
%T Krylov--Bogolyubov averaging
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 427-444
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
%G en
%F RM_2020_75_3_a1
W. Jian; S. B. Kuksin; Y. Wu. Krylov--Bogolyubov averaging. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/