@article{RM_2020_75_3_a1,
author = {W. Jian and S. B. Kuksin and Y. Wu},
title = {Krylov{\textendash}Bogolyubov averaging},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {427--444},
year = {2020},
volume = {75},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/}
}
W. Jian; S. B. Kuksin; Y. Wu. Krylov–Bogolyubov averaging. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
[1] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York, 1983, xi+334 pp. | MR | Zbl
[2] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[3] D. Bambusi, “An averaging theorem for quasilinear Hamiltonian PDEs”, Ann. Henri Poincaré, 4:4 (2003), 685–712 | DOI | MR | Zbl
[4] N. N. Bogolyubov, Yu. A. Mitropol'skii, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, New York, 1961, v+537 pp. | MR | MR | Zbl | Zbl
[5] I. M. Gel'fand, Lectures on linear algebra, Interscience Tracts in Pure and Applied Mathematics, 9, Interscience Publishers, New York–London, 1961, ix+185 pp. | MR | MR | Zbl | Zbl
[6] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, “Effective stability for a {H}amiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem”, J. Differential Equations, 77:1 (1989), 167–198 | DOI | MR | Zbl
[7] G. Huang, “An averaging theorem for nonlinear Schrödinger equations with small nonlinearities”, Discrete Contin. Dyn. Syst., 34:9 (2014), 3555–3574 | DOI | MR | Zbl
[8] G. Huang, S. Kuksin, A. Maiocchi, “Time-averaging for weakly nonlinear CGL equations with arbitrary potentials”, Hamiltonian partial differential equations and applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 323–349 | DOI | MR | Zbl
[9] R. Khasminskii, “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kybernetika (Prague), 4 (1968), 260–279 | MR | Zbl
[10] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl