Krylov–Bogolyubov averaging
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modified approach to the classical Krylov–Bogolyubov averaging method is presented. It was developed recently for studying partial differential equations, enables one to treat Lipschitz perturbations of linear systems with purely imaginary spectrum, and may be generalized to the case of systems of PDEs with small non-linearities. Bibliography: 10 titles.
Keywords: Krylov–Bogolyubov method, locally Lipschitz vector-field, Hamiltonian equations.
@article{RM_2020_75_3_a1,
     author = {W. Jian and S. B. Kuksin and Y. Wu},
     title = {Krylov{\textendash}Bogolyubov averaging},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {427--444},
     year = {2020},
     volume = {75},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/}
}
TY  - JOUR
AU  - W. Jian
AU  - S. B. Kuksin
AU  - Y. Wu
TI  - Krylov–Bogolyubov averaging
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 427
EP  - 444
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
LA  - en
ID  - RM_2020_75_3_a1
ER  - 
%0 Journal Article
%A W. Jian
%A S. B. Kuksin
%A Y. Wu
%T Krylov–Bogolyubov averaging
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 427-444
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
%G en
%F RM_2020_75_3_a1
W. Jian; S. B. Kuksin; Y. Wu. Krylov–Bogolyubov averaging. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/

[1] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York, 1983, xi+334 pp. | MR | Zbl

[2] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[3] D. Bambusi, “An averaging theorem for quasilinear Hamiltonian PDEs”, Ann. Henri Poincaré, 4:4 (2003), 685–712 | DOI | MR | Zbl

[4] N. N. Bogolyubov, Yu. A. Mitropol'skii, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, New York, 1961, v+537 pp. | MR | MR | Zbl | Zbl

[5] I. M. Gel'fand, Lectures on linear algebra, Interscience Tracts in Pure and Applied Mathematics, 9, Interscience Publishers, New York–London, 1961, ix+185 pp. | MR | MR | Zbl | Zbl

[6] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, “Effective stability for a {H}amiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem”, J. Differential Equations, 77:1 (1989), 167–198 | DOI | MR | Zbl

[7] G. Huang, “An averaging theorem for nonlinear Schrödinger equations with small nonlinearities”, Discrete Contin. Dyn. Syst., 34:9 (2014), 3555–3574 | DOI | MR | Zbl

[8] G. Huang, S. Kuksin, A. Maiocchi, “Time-averaging for weakly nonlinear CGL equations with arbitrary potentials”, Hamiltonian partial differential equations and applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 323–349 | DOI | MR | Zbl

[9] R. Khasminskii, “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kybernetika (Prague), 4 (1968), 260–279 | MR | Zbl

[10] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl