Krylov--Bogolyubov averaging
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A modified approach to the classical Krylov–Bogolyubov averaging method is presented. It was developed recently for studying partial differential equations, enables one to treat Lipschitz perturbations of linear systems with purely imaginary spectrum, and may be generalized to the case of systems of PDEs with small non-linearities.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Krylov–Bogolyubov method, locally Lipschitz vector-field, Hamiltonian equations.
                    
                    
                    
                  
                
                
                @article{RM_2020_75_3_a1,
     author = {W. Jian and S. B. Kuksin and Y. Wu},
     title = {Krylov--Bogolyubov averaging},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {427--444},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/}
}
                      
                      
                    W. Jian; S. B. Kuksin; Y. Wu. Krylov--Bogolyubov averaging. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 427-444. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a1/
