Non-uniform Kozlov–Treschev averagings in the ergodic theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalizations and refinements are given for results of Kozlov and Treschev on non-uniform averagings in the ergodic theorem in the case of operator semigroups on spaces of integrable functions and semigroups of measure-preserving transformations. Conditions on the averaging measures are studied under which the averages converge for broad classes of integrable functions. Bibliography: 96 items.
Keywords: ergodic theorem, operator semigroup, averaging of a semigroup.
@article{RM_2020_75_3_a0,
     author = {V. I. Bogachev},
     title = {Non-uniform {Kozlov{\textendash}Treschev} averagings in the ergodic theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {393--425},
     year = {2020},
     volume = {75},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Non-uniform Kozlov–Treschev averagings in the ergodic theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 393
EP  - 425
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/
LA  - en
ID  - RM_2020_75_3_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Non-uniform Kozlov–Treschev averagings in the ergodic theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 393-425
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/
%G en
%F RM_2020_75_3_a0
V. I. Bogachev. Non-uniform Kozlov–Treschev averagings in the ergodic theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/

[1] H. Aimar, A. L. Bernardis, F. J. Martín-Reyes, “Ergodic transforms associated to general averages”, Studia Math., 199:2 (2010), 107–143 | DOI | MR | Zbl

[2] M. A. Akcoglu, “A pointwise ergodic theorem in $L_p$-spaces”, Canadian J. Math., 27:5 (1975), 1075–1082 | DOI | MR | Zbl

[3] M. A. Akcoglu, R. V. Chacon, “Ergodic properties of operators in Lebesgue space”, Advances in probability and related topics, v. 2, Dekker, New York, 1970, 1–47 | MR | Zbl

[4] M. A. Akcoglu, R. V. Chacon, “A local ratio theorem”, Canadian J. Math., 22:3 (1970), 545–552 | DOI | MR | Zbl

[5] M. A. Akcoglu, J. Cunsolo, “An ergodic theorem for semigroups”, Proc. Amer. Math. Soc., 24 (1970), 161–170 | DOI | MR | Zbl

[6] M. A. Akcoglu, Y. Déniel, “Moving weighted averages”, Canadian J. Math., 45:3 (1993), 449–469 | DOI | MR | Zbl

[7] N. Asmar, E. Berkson, T. A. Gillespie, “Distributional control and generalized analyticity”, Integral Equations Operator Theory, 14:3 (1991), 311–341 | DOI | MR | Zbl

[8] S. Banach, “Sur la convergence presque partout de fonctionnelles linéaires”, Bull. Sci. Math. (2), 50 (1926), 27–32 | Zbl

[9] S. Banach, {ØE}uvres, v. II, Travaux sur l'analyse fonctionnelle, PWN–Éditions Scientifiques de Pologne, Warsaw, 1979, 470 pp. | MR | Zbl

[10] M. E. Becker, “Weighted ergodic theorems for weakly mixing transformation groups”, Publ. Mat., 34:2 (1990), 307–309 | DOI | MR | Zbl

[11] A. Bellow, V. Losert, “The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences”, Trans. Amer. Math. Soc., 288:1 (1985), 307–345 | DOI | MR | Zbl

[12] K. N. Berk, “Ergodic theory with recurrent weights”, Ann. Math. Statist., 39:4 (1968), 1107–1114 | DOI | MR | Zbl

[13] A. L. Bernardis, F. J. Martín-Reyes, M. D. Sarrión Gavilán, “Convergence in the Cesàro sense of ergodic operators associated with a flow”, Illinois J. Math., 44:3 (2000), 667–680 | DOI | MR | Zbl

[14] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl

[15] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[16] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl

[17] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis. Current trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR | Zbl

[18] V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russian Math. Surveys, 73:2 (2018), 191–260 | DOI | DOI | MR | Zbl

[19] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[20] V. I. Bogachev, A. V. Korolev, “On the ergodic theorem in the Kozlov–Treshchev form”, Dokl. Math., 75:1 (2007), 47–52 | DOI | MR | Zbl

[21] V. I. Bogachev, A. V. Korolev, A. Yu. Pilipenko, “Non uniform averagings in the ergodic theorem for stochastic flows”, Dokl. Math., 81:3 (2010), 422–425 | DOI | MR | Zbl

[22] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078 | DOI | DOI | MR | Zbl

[23] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl

[24] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300 | DOI | MR | Zbl

[25] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713 | DOI | MR | Zbl

[26] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On convergence to stationary distributions for solutions of nonlinear Fokker–Planck–Kolmogorov equations”, J. Math. Sci. (N.Y.), 242:1 (2019), 69–84 | DOI | MR | Zbl

[27] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020, xvi+586 pp. | DOI

[28] M. Broise, Y. Déniel, Y. Derriennic, “Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires”, Ann. Inst. Fourier (Grenoble), 39:3 (1989), 689–714 | DOI | MR | Zbl

[29] M. Broise, Y. Déniel, Y. Derriennic, “Maximal inequalities and ergodic theorems for Cesàro or weighted averages”, Almost everywhere convergence (Evanston, IL, 1989), v. II, Academic Press, Boston, MA, 1991, 93–107 | MR | Zbl

[30] R. V. Chacon, U. Krengel, “Linear modulus of a linear operator”, Proc. Amer. Math. Soc., 15:4 (1964), 553–559 | DOI | MR | Zbl

[31] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl

[32] N. Dunford, D. S. Miller, “On the ergodic theorem”, Trans. Amer. Math. Soc., 60 (1946), 538–549 | DOI | MR | Zbl

[33] N. Dunford, J. T. Schwartz, “Convergence almost everywhere of operator averages”, J. Rational Mech. Anal., 5 (1956), 129–178 | DOI | MR | Zbl

[34] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[35] D. A. Edwards, “A maximal ergodic theorem for Abel means of continuous-parameter operator semigroups”, J. Funct. Anal., 7 (1971), 61–70 | DOI | MR | Zbl

[36] R. Émilion, “Mean-bounded operators and mean ergodic theorems”, J. Funct. Anal., 61:1 (1985), 1–14 | DOI | MR | Zbl

[37] R. Émilion, “On the pointwise ergodic theorem in $L^p$, $1

+\infty$”, Studia Math., 81:2 (1985), 171–178 | DOI | MR | Zbl

[38] D. Feyel, “Espaces complètement réticulés de pseudo-noyaux. Applications aux resolvantes et aux semi-groupes complexes”, Séminaire de théorie du potentiel (Paris, 1976/1977), v. 3, Lecture Notes in Math., 681, Springer, Berlin, 1978, 54–80 | MR | Zbl

[39] D. Feyel, “Théorèmes de convergence presque-sûre, existence de semi-groupes”, Adv. in Math., 34:2 (1979), 145–162 | DOI | MR | Zbl

[40] H. Fong, L. Sucheston, “On the ratio ergodic theorem for semi-groups”, Pacific J. Math., 39:3 (1971), 659–667 | DOI | MR | Zbl

[41] T. A. Gillespie, J. L. Torrea, “Weighted ergodic theory and dimension free estimates”, Q. J. Math., 54:3 (2003), 257–280 | DOI | MR | Zbl

[42] A. Gorodnik, A. Nevo, The ergodic theory of lattice subgroups, Ann. of Math. Stud., 172, Princeton Univ. Press, Princeton, NJ, 2010, xiv+121 pp. | MR | Zbl

[43] M. Haase, “Convexity inequalities for positive operators”, Positivity, 11:1 (2007), 57–68 | DOI | MR | Zbl

[44] S. Hasegawa, R. Satō, “A general ratio ergodic theorem for semigroups”, Pacific J. Math., 62:2 (1976), 435–437 | DOI | MR | Zbl

[45] R. L. Jones, R. Kaufman, J. M. Rosenblatt, M. Wierdl, “Oscillation in ergodic theory”, Ergodic Theory Dynam. Systems, 18:4 (1998), 889–935 | DOI | MR | Zbl

[46] R. L. Jones, J. Rosenblatt, “Differential and ergodic transforms”, Math. Ann., 323:3 (2002), 525–546 | DOI | MR | Zbl

[47] A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | DOI | MR | Zbl

[48] A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 2016, 1–53 | DOI | MR | Zbl

[49] L. Kantorovitch, “Linear operations in semi-ordered spaces. I”, Matem. sb., 7(49):2 (1940), 209–284 | MR | Zbl

[50] A. Ya. Khinchin, Continued fractions, Reprint of the 1964 ed., Dover Publications, Inc., Mineola, NY, 1997, xii+95 pp. | MR | MR | Zbl

[51] C. Kipnis, “Majoration des semi-groupes de contractions de $L^1$ et applications”, Ann. Inst. H. Poincaré Sect. B (N. S.), 10 (1974), 369–384 | MR | Zbl

[52] A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020) (in press) | DOI | DOI | MR

[53] A. V. Korolev, “On the ergodic theorem in the Kozlov–Treshchev form for an operator semigroup”, Ukrainian Math. J., 62:5 (2010), 809–815 | DOI | MR | Zbl

[54] A. V. Korolev, “On the convergence of nonuniform ergodic means”, Math. Notes, 87:5-6 (2010), 912–915 | DOI | DOI | MR | Zbl

[55] V. V. Kozlov, “Weighted averages, uniform distribution, and strict ergodicity”, Russian Math. Surveys, 60:6 (2005), 1121–1146 | DOI | DOI | MR | Zbl

[56] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl

[57] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140 | DOI | DOI | MR | Zbl

[58] V. V. Kozlov, D. V. Treschev, “On new forms of the ergodic theorem”, J. Dynam. Control Syst., 9:3 (2003), 449–453 | DOI | MR | Zbl

[59] V. V. Kozlov, D. V. Treshchev, “Evolution of measures in the phase space of nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 136:3 (2003), 1325–1335 | DOI | DOI | MR | Zbl

[60] V. V. Kozlov, D. V. Treschev, “Weak convergence of measures in conservative systems”, Teoriya predstavlenii, dinamicheskie sistemy. VIII, Spets. vyp., Zap. nauch. sem. POMI, 300, POMI, SPb., 2003, 194–205 ; J. Math. Sci. (N. Y.), 128:2 (2005), 2791–2797 | MR | Zbl | DOI

[61] V. V. Kozlov, D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theoret. and Math. Phys., 151:1 (2007), 539–555 | DOI | DOI | MR | Zbl

[62] M. A. Krasnosel'skiĭ, Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[63] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[64] U. Krengel, Ergodic theorems, De Gruyter Stud. Math., 6, Walter de Gruyter Co., Berlin, 1985, viii+357 pp. | DOI | MR | Zbl

[65] Y. Kubokawa, “Ergodic theorems for contraction semi-groups”, J. Math. Soc. Japan, 27:2 (1975), 184–193 | DOI | MR | Zbl

[66] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990, xiv+346 pp. | MR | Zbl

[67] A. L. Kuzemsky, Irreversible evolution of open systems and the nonequilibrium statistical operator method, 2019, 40 pp., arXiv: 1911.13203v1

[68] M. Lacey, E. Terwilleger, “A Wiener–Wintner theorem for the Hilbert transform”, Ark. Mat., 46:2 (2008), 315–336 | DOI | MR | Zbl

[69] M. Lin, M. Weber, “Weighted ergodic theorems and strong laws of large numbers”, Ergodic Theory Dynam. Systems, 27:2 (2007), 511–543 | DOI | MR | Zbl

[70] E. Lindenstrauss, “Pointwise theorems for amenable groups”, Invent. Math., 146:2 (2001), 259–295 | DOI | MR | Zbl

[71] M. Lorente Domínguez, F. J. Martín-Reyes, “The ergodic Hilbert transform for Cesàro bounded flows”, Tohoku Math. J. (2), 46:4 (1994), 541–556 | DOI | MR | Zbl

[72] G. G. Lorentz, “On the theory of spaces $\Lambda$”, Pacific J. Math., 1:3 (1951), 411–429 | DOI | MR | Zbl

[73] E. Lukacs, Characteristic functions, 2nd ed., rev. and enl., Charles Griffin, London; Hafner Publishing Co., New York, 1970, x+350 pp. | MR | MR | Zbl | Zbl

[74] R. Oberlin, A. Seeger, T. Tao, C. Thiele, J. Wright, “A variation norm Carleson theorem”, J. Eur. Math. Soc. (JEMS), 14:2 (2012), 421–464 | DOI | MR | Zbl

[75] K. Petersen, Ergodic theory, Cambridge Stud. Adv. Math., 2, Corr. reprint of the 1983 original, Cambridge Univ. Press, Cambridge, 1989, xii+329 pp. | MR | Zbl

[76] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp. | MR | Zbl

[77] R. Satō, “An Abel-maximal ergodic theorem for semi-groups”, Pacific J. Math., 51:2 (1974), 543–547 | DOI | MR | Zbl

[78] R. Satō, “Ergodic theorems for semi-groups in $L_p$, $1

\infty$”, Tohoku Math. J. (2), 26 (1974), 73–76 | DOI | MR | Zbl

[79] R. Sato, “Ergodic theorems for semigroups of positive operators”, J. Math. Soc. Japan, 29:4 (1977), 591–606 | DOI | MR | Zbl

[80] R. Sato, “Individual ergodic theorems for pseudo-resolvents”, Math. J. Okayama Univ., 23:1 (1981), 59–67 | MR | Zbl

[81] R. Sato, “An ergodic maximal equality for nonsingular flows and applications”, Acta Math. Hungar., 61:1-2 (1993), 51–58 | DOI | MR | Zbl

[82] R. Sato, “Ergodic properties of contraction semigroups in $L_p$, $1

\infty$”, Comment. Math. Univ. Carolin., 35:2 (1994), 337–346 | MR | Zbl

[83] B. Scarpellini, “Fourier analysis on dynamical systems”, J. Differential Equations, 28:3 (1978), 309–326 | DOI | MR | Zbl

[84] A. R. Shirikyan, “Controllability implies mixing. I. Convergence in the total variation metric”, Russian Math. Surveys, 72:5 (2017), 939–953 | DOI | DOI | MR | Zbl

[85] A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Transl. Math. Monogr., 78, Amer. Math. Soc., Providence, RI, 1989, xvi+339 pp. | MR | MR | Zbl | Zbl

[86] E. M. Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Ann. of Math. Stud., 63, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1970, viii+146 pp. | DOI | MR | Zbl

[87] A. A. Tempel'man, “Ergodic theorems for general dynamical systems”, Trans. Moscow Math. Soc., 26 (1974), 94–132 | MR | Zbl

[88] A. Tempelman, Ergodic theorems for group actions. Informational and thermodynamical aspects, Math. Appl., 78, Kluwer Acad. Publ., Dordrecht, 1992, xviii+399 pp. | DOI | MR | MR | Zbl | Zbl

[89] A. Tempelman, A. Shulman, “Dominated and pointwise ergodic theorems with ‘weighted’ averages for bounded Lamperti representations of amenable groups”, J. Math. Anal. Appl., 474:1 (2019), 23–58 | DOI | MR | Zbl

[90] S. Tsurumi, “An ergodic theorem for a semigroup of linear contractions”, Proc. Japan Acad., 49:5 (1973), 306–309 | DOI | MR | Zbl

[91] S. Tsurumi, “General ergodic theorems for semigroups of linear operators”, Publications des séminaires de mathématiques et informatique de Rennes, 1975, no. 1, 11, 9 pp. http://www.numdam.org/item/PSMIR_1975___1_A11_0/

[92] A. J. Veretennikov, “On strong solutions and explicit formulas for solutions of stochastic integral equations”, Math. USSR-Sb., 39:3 (1981), 387–403 | DOI | MR | Zbl

[93] N. Wiener, A. Wintner, “On the ergodic dynamics of almost periodic systems”, Amer. J. Math., 63:4 (1941), 794–824 | DOI | MR | Zbl

[94] T. Yoshimoto, “On multiparameter Chacon's type ergodic theorems”, Acta Sci. Math. (Szeged), 78:3-4 (2012), 489–515 | MR | Zbl

[95] T. Yoshimoto, “Multiparameter ratio ergodic theorems for semigroups”, J. Funct. Anal., 265:12 (2013), 3104–3132 | DOI | MR | Zbl

[96] T. Yoshimoto, “Almost everywhere convergence of multiple operator averages for affine semigroups”, Acta Sci. Math. (Szeged), 84:3-4 (2018), 509–554 | DOI | MR | Zbl