Non-uniform Kozlov--Treschev averagings in the ergodic theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizations and refinements are given for results of Kozlov and Treschev on non-uniform averagings in the ergodic theorem in the case of operator semigroups on spaces of integrable functions and semigroups of measure-preserving transformations. Conditions on the averaging measures are studied under which the averages converge for broad classes of integrable functions. Bibliography: 96 items.
Keywords: ergodic theorem, operator semigroup, averaging of a semigroup.
@article{RM_2020_75_3_a0,
     author = {V. I. Bogachev},
     title = {Non-uniform {Kozlov--Treschev} averagings in the ergodic theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {393--425},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Non-uniform Kozlov--Treschev averagings in the ergodic theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 393
EP  - 425
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/
LA  - en
ID  - RM_2020_75_3_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Non-uniform Kozlov--Treschev averagings in the ergodic theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 393-425
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/
%G en
%F RM_2020_75_3_a0
V. I. Bogachev. Non-uniform Kozlov--Treschev averagings in the ergodic theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/