Non-uniform Kozlov--Treschev averagings in the ergodic theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalizations and refinements are given for results of Kozlov and Treschev on non-uniform averagings in the ergodic theorem in the case of operator semigroups on spaces of integrable functions and semigroups of measure-preserving transformations. Conditions on the averaging measures are studied under which the averages converge for broad classes of integrable functions.
Bibliography: 96 items.
Keywords:
ergodic theorem, operator semigroup, averaging of a semigroup.
@article{RM_2020_75_3_a0,
author = {V. I. Bogachev},
title = {Non-uniform {Kozlov--Treschev} averagings in the ergodic theorem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {393--425},
publisher = {mathdoc},
volume = {75},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/}
}
V. I. Bogachev. Non-uniform Kozlov--Treschev averagings in the ergodic theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 393-425. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a0/