@article{RM_2020_75_2_a5,
author = {A. A. Muravlev},
title = {Asymptotics of the boundaries in one non-linear optimal stopping problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {380--382},
year = {2020},
volume = {75},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a5/}
}
A. A. Muravlev. Asymptotics of the boundaries in one non-linear optimal stopping problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 380-382. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a5/
[1] J. Breakwell, H. Chernoff, Ann. Math. Stat., 35:1 (1964), 162–173 | DOI | MR | Zbl
[2] U. Çetin, A. Novikov, A. N. Shiryaev, Sequential Anal., 32:3 (2013), 288–296 | DOI | MR | Zbl
[3] I. V. Girsanov, Teoriya veroyatn. i ee primen., 5:3 (1960), 314–330 | DOI | MR | Zbl
[4] A. Irle, O. Kubillus, V. Paulsen, J. Appl. Probab., 38:1 (2001), 67–79 | DOI | MR | Zbl
[5] T. L. Lai, Ann. Statist., 1:4 (1973), 659–673 | DOI | MR | Zbl
[6] V. S. Mikhalevich, Vestn. Kiev. un-ta, 1958, no. 1, 101–104
[7] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer-Verlag, Berlin, 2008, xviii+393 pp. | DOI | MR | Zbl
[8] | DOI
[9] A. A. Muravlev, UMN, 68:3(411) (2013), 193–194 | DOI | DOI | MR | Zbl
[10] A. Muravlev, M. Zhitlukhin, A Bayesian sequential test for the drift of a fractional Brownian motion, 2018, 13 pp., arXiv: 1804.02757
[11] I. Norros, E. Valkeila, J. Virtamo, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl
[12] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | DOI | MR | Zbl
[14] A. N. Shiryaev, UMN, 73:1(439) (2018), 179–180 | DOI | DOI | MR | Zbl