Mots-clés : universal Teichmüller space, Dirac quantization
@article{RM_2020_75_2_a2,
author = {A. G. Sergeev},
title = {In search of infinite-dimensional {K\"ahler} geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {321--367},
year = {2020},
volume = {75},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/}
}
A. G. Sergeev. In search of infinite-dimensional Kähler geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 321-367. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/
[1] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl
[2] G. D. Birkhoff, “Singular points of ordinary linear differential equations”, Trans. Amer. Math. Soc., 10:4 (1909), 436–470 | DOI | MR | Zbl
[3] G. D. Birkhoff, “Equivalent singular points of ordinary linear differential equations”, Math. Ann., 74:1 (1913), 134–139 | DOI | MR | Zbl
[4] R. Bott, “On the characteristic classes of groups of diffeomorphisms”, Enseign. Math. (2), 23:3-4 (1977), 209–220 | MR | Zbl
[5] R. Bowen, “Hausdorff dimension of quasi-circles”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11–25 | DOI | MR | Zbl
[6] M. J. Bowick, A. Lahiri, “The Ricci curvature of $\operatorname{Diff}S^1/\operatorname{SL}(2,\mathbb R)$”, J. Math. Phys., 29:9 (1988), 1979–1981 | DOI | MR | Zbl
[7] M. J. Bowick, S. G. Rajeev, “The holomorphic geometry of closed bosonic string theory and $\operatorname{Diff}S^1/S^1$”, Nuclear Phys. B, 293:2 (1987), 348–384 | DOI | MR
[8] S.-S. Chern, Complex manifolds, Textos de Matemática, 5, Instituto de Física e Matemática, Universidade do Recife, Recife, Pernambuco, 1959, v+181 pp. | MR | Zbl | Zbl
[9] A. Connes, Géométrie non commutative, InterEditions, Paris, 1990, 240 pp. | MR | Zbl
[10] I. M. Gel'fand, D. B. Fuchs, “The cohomologies of the Lie algebra of the vector fields in a circle”, Funct. Anal. Appl., 2:4 (1968), 342–343 | DOI | MR | Zbl
[11] R. Goodman, N. R. Wallach, “Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle”, J. Reine Angew. Math., 1984:347 (1984), 69–133 | DOI | MR | Zbl
[12] R. Goodman, N. R. Wallach, “Projective unitary positive-energy representations of $\operatorname{Diff}(S^1)$”, J. Funct. Anal., 63:3 (1985), 299–321 | DOI | MR | Zbl
[13] M. B. Green, J. H. Schwarz, E. Witten, Superstring theory, v. 1, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1987, x+469 pp. | MR | MR | Zbl
[14] L. Guieu, “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 971–1009 | DOI | MR | Zbl
[15] A. Huckleberry, T. Wurzbacher (eds.), Infinite dimensional Kähler manifolds (Oberwolfach, 1995), DMV Sem., 31, Birkhäuser Verlag, Basel, 2001, xiv+375 pp. | DOI | MR | Zbl
[16] M. Kaku, Introduction to superstrings, Grad. Texts Contemp. Phys., Springer-Verlag, New York, 1988, xvi+568 pp. | MR | Zbl
[17] A. A. Kirillov, “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and non-linear systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer, Berlin, 1982, 101–123 | DOI | MR | Zbl
[18] A. A. Kirillov, D. V. Yur'ev, “Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funct. Anal. Appl., 21:4 (1987), 284–294 | DOI | MR | Zbl
[19] V. F. Lazutkin, T. F. Pankratova, “Normal forms and versal deformations for Hill's equation”, Funct. Anal. Appl., 9:4 (1975), 306–311 | DOI | MR | Zbl
[20] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl
[21] L. Lempert, “The Virasoro group as a complex manifold”, Math. Res. Lett., 2:4 (1995), 475–495 | DOI | MR | Zbl
[22] A. Moroianu, Lectures on Kähler geometry, London Math. Soc. Stud. Texts, 69, Cambridge Univ. Press, Cambridge, 2007, x+171 pp. | DOI | MR | Zbl
[23] S. Nag, The complex analytic theory of Teichmüller spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1988, xiv+427 pp. | MR | Zbl
[24] S. Nag, “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc. (N. S.), 26:2 (1992), 280–287 | DOI | MR | Zbl
[25] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl
[26] S. Nag, A. Verjovsky, “$\operatorname{Diff}(S^1)$ and the Teichmüller spaces”, Comm. Math. Phys., 130:1 (1990), 123–138 | DOI | MR | Zbl
[27] N. K. Nikol'skiĭ, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl
[28] A. Pflüger, “Über die Konstruktion Riemannscher Flächen durch Verhëftung”, J. Indian Math. Soc. (N. S.), 24 (1961), 401–412 | MR | Zbl
[29] A. M. Polyakov, Gauge fields and strings, Contemp. Concepts Phys., 3, Harwood Academic Publ., Chur, 1987, x+301 pp. | MR | Zbl
[30] A. Pressley, G. Segal, Loop groups, Oxford Math. Monogr., 2nd rev. ed., Oxford Univ. Press, New York, 1988, viii+318 pp. | MR | Zbl | Zbl
[31] H. M. Reimann, “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33:3 (1976), 247–270 | DOI | MR | Zbl
[32] J. Scherk, “An introduction to the theory of dual models and strings”, Rev. Modern Phys., 47 (1975), 123–164 | DOI | MR
[33] G. Segal, “Unitary representations of some infinite dimensional groups”, Comm. Math. Phys., 80:3 (1981), 301–342 | DOI | MR | Zbl
[34] A. G. Sergeev, Kelerova geometriya prostranstv petel, MTsNMO, M., 2001, 128 pp.
[35] A. G. Sergeev, “Tvistornoe kvantovanie prostranstva petel $\Omega\mathbb R^d$”, Zbirnik prats In-tu mat. NAN Ukraïni, 6:1 (2009), 287–305 | Zbl
[36] A. G. Sergeev, “Geometricheskoe kvantovanie prostranstv petel”, Sovr. probl. matem., 13, MIAN, M., 2009, 3–294 | DOI
[37] A. G. Sergeev, Kähler geometry of loop spaces, MSJ Memoirs, 23, Math. Soc. Japan, Tokyo, 2010, xvi+212 pp. | DOI | MR | Zbl
[38] A. Sergeev, Lectures on universal Teichmüller space, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2014, viii+104 pp. | DOI | DOI | MR | Zbl | Zbl
[39] A. G. Sergeev, “Quantization of the Sobolev space of half-differentiable functions”, Sb. Math., 207:10 (2016), 1450–1457 | DOI | DOI | MR | Zbl
[40] L. A. Takhtajan, L.-P. Teo, Weil–Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 183, No 861, Amer. Math. Soc., Providence, RI, 2006, viii+119 pp. | DOI | MR | Zbl
[41] A. Weil, Introduction à l'étude des variétés kählériennes, Publ. Inst. Math. Univ. Nancago, VI, Actualités Sci. Ind., No 1267, Hermann, Paris, 1958, 175 pp. | MR | Zbl | Zbl
[42] E. Witten, “Coadjoint orbits of the Virasoro group”, Comm. Math. Phys., 114:1 (1988), 1–53 | DOI | MR | Zbl
[43] S.-T. Yau, S. Nadis, The shape of inner space. String theory and the geometry of the universe's hidden dimensions, Basic Books, New York, 2010, xx+377 pp. | MR | Zbl