In search of infinite-dimensional Kähler geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 321-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a survey of recent results in the Kähler geometry of infinite-dimensional Kähler manifolds. Three particular classes of such manifolds are investigated: the loop spaces of compact Lie groups, Hilbert–Schmidt Grassmannians, and the universal Teichmüller space. These investigations have been prompted both by requirements in Kähler geometry itself and by connections with string theory, which are considered in the last section. Bibliography: 43 titles.
Keywords: loop spaces of compact Lie groups, Hilbert–Schmidt Grassmannian manifolds, Virasoro algebra, half-differentiable strings.
Mots-clés : universal Teichmüller space, Dirac quantization
@article{RM_2020_75_2_a2,
     author = {A. G. Sergeev},
     title = {In search of infinite-dimensional {K\"ahler} geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {321--367},
     year = {2020},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - In search of infinite-dimensional Kähler geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 321
EP  - 367
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/
LA  - en
ID  - RM_2020_75_2_a2
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T In search of infinite-dimensional Kähler geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 321-367
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/
%G en
%F RM_2020_75_2_a2
A. G. Sergeev. In search of infinite-dimensional Kähler geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 321-367. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a2/

[1] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl

[2] G. D. Birkhoff, “Singular points of ordinary linear differential equations”, Trans. Amer. Math. Soc., 10:4 (1909), 436–470 | DOI | MR | Zbl

[3] G. D. Birkhoff, “Equivalent singular points of ordinary linear differential equations”, Math. Ann., 74:1 (1913), 134–139 | DOI | MR | Zbl

[4] R. Bott, “On the characteristic classes of groups of diffeomorphisms”, Enseign. Math. (2), 23:3-4 (1977), 209–220 | MR | Zbl

[5] R. Bowen, “Hausdorff dimension of quasi-circles”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11–25 | DOI | MR | Zbl

[6] M. J. Bowick, A. Lahiri, “The Ricci curvature of $\operatorname{Diff}S^1/\operatorname{SL}(2,\mathbb R)$”, J. Math. Phys., 29:9 (1988), 1979–1981 | DOI | MR | Zbl

[7] M. J. Bowick, S. G. Rajeev, “The holomorphic geometry of closed bosonic string theory and $\operatorname{Diff}S^1/S^1$”, Nuclear Phys. B, 293:2 (1987), 348–384 | DOI | MR

[8] S.-S. Chern, Complex manifolds, Textos de Matemática, 5, Instituto de Física e Matemática, Universidade do Recife, Recife, Pernambuco, 1959, v+181 pp. | MR | Zbl | Zbl

[9] A. Connes, Géométrie non commutative, InterEditions, Paris, 1990, 240 pp. | MR | Zbl

[10] I. M. Gel'fand, D. B. Fuchs, “The cohomologies of the Lie algebra of the vector fields in a circle”, Funct. Anal. Appl., 2:4 (1968), 342–343 | DOI | MR | Zbl

[11] R. Goodman, N. R. Wallach, “Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle”, J. Reine Angew. Math., 1984:347 (1984), 69–133 | DOI | MR | Zbl

[12] R. Goodman, N. R. Wallach, “Projective unitary positive-energy representations of $\operatorname{Diff}(S^1)$”, J. Funct. Anal., 63:3 (1985), 299–321 | DOI | MR | Zbl

[13] M. B. Green, J. H. Schwarz, E. Witten, Superstring theory, v. 1, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1987, x+469 pp. | MR | MR | Zbl

[14] L. Guieu, “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 971–1009 | DOI | MR | Zbl

[15] A. Huckleberry, T. Wurzbacher (eds.), Infinite dimensional Kähler manifolds (Oberwolfach, 1995), DMV Sem., 31, Birkhäuser Verlag, Basel, 2001, xiv+375 pp. | DOI | MR | Zbl

[16] M. Kaku, Introduction to superstrings, Grad. Texts Contemp. Phys., Springer-Verlag, New York, 1988, xvi+568 pp. | MR | Zbl

[17] A. A. Kirillov, “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and non-linear systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer, Berlin, 1982, 101–123 | DOI | MR | Zbl

[18] A. A. Kirillov, D. V. Yur'ev, “Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funct. Anal. Appl., 21:4 (1987), 284–294 | DOI | MR | Zbl

[19] V. F. Lazutkin, T. F. Pankratova, “Normal forms and versal deformations for Hill's equation”, Funct. Anal. Appl., 9:4 (1975), 306–311 | DOI | MR | Zbl

[20] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl

[21] L. Lempert, “The Virasoro group as a complex manifold”, Math. Res. Lett., 2:4 (1995), 475–495 | DOI | MR | Zbl

[22] A. Moroianu, Lectures on Kähler geometry, London Math. Soc. Stud. Texts, 69, Cambridge Univ. Press, Cambridge, 2007, x+171 pp. | DOI | MR | Zbl

[23] S. Nag, The complex analytic theory of Teichmüller spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1988, xiv+427 pp. | MR | Zbl

[24] S. Nag, “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc. (N. S.), 26:2 (1992), 280–287 | DOI | MR | Zbl

[25] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl

[26] S. Nag, A. Verjovsky, “$\operatorname{Diff}(S^1)$ and the Teichmüller spaces”, Comm. Math. Phys., 130:1 (1990), 123–138 | DOI | MR | Zbl

[27] N. K. Nikol'skiĭ, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl

[28] A. Pflüger, “Über die Konstruktion Riemannscher Flächen durch Verhëftung”, J. Indian Math. Soc. (N. S.), 24 (1961), 401–412 | MR | Zbl

[29] A. M. Polyakov, Gauge fields and strings, Contemp. Concepts Phys., 3, Harwood Academic Publ., Chur, 1987, x+301 pp. | MR | Zbl

[30] A. Pressley, G. Segal, Loop groups, Oxford Math. Monogr., 2nd rev. ed., Oxford Univ. Press, New York, 1988, viii+318 pp. | MR | Zbl | Zbl

[31] H. M. Reimann, “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33:3 (1976), 247–270 | DOI | MR | Zbl

[32] J. Scherk, “An introduction to the theory of dual models and strings”, Rev. Modern Phys., 47 (1975), 123–164 | DOI | MR

[33] G. Segal, “Unitary representations of some infinite dimensional groups”, Comm. Math. Phys., 80:3 (1981), 301–342 | DOI | MR | Zbl

[34] A. G. Sergeev, Kelerova geometriya prostranstv petel, MTsNMO, M., 2001, 128 pp.

[35] A. G. Sergeev, “Tvistornoe kvantovanie prostranstva petel $\Omega\mathbb R^d$”, Zbirnik prats In-tu mat. NAN Ukraïni, 6:1 (2009), 287–305 | Zbl

[36] A. G. Sergeev, “Geometricheskoe kvantovanie prostranstv petel”, Sovr. probl. matem., 13, MIAN, M., 2009, 3–294 | DOI

[37] A. G. Sergeev, Kähler geometry of loop spaces, MSJ Memoirs, 23, Math. Soc. Japan, Tokyo, 2010, xvi+212 pp. | DOI | MR | Zbl

[38] A. Sergeev, Lectures on universal Teichmüller space, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2014, viii+104 pp. | DOI | DOI | MR | Zbl | Zbl

[39] A. G. Sergeev, “Quantization of the Sobolev space of half-differentiable functions”, Sb. Math., 207:10 (2016), 1450–1457 | DOI | DOI | MR | Zbl

[40] L. A. Takhtajan, L.-P. Teo, Weil–Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 183, No 861, Amer. Math. Soc., Providence, RI, 2006, viii+119 pp. | DOI | MR | Zbl

[41] A. Weil, Introduction à l'étude des variétés kählériennes, Publ. Inst. Math. Univ. Nancago, VI, Actualités Sci. Ind., No 1267, Hermann, Paris, 1958, 175 pp. | MR | Zbl | Zbl

[42] E. Witten, “Coadjoint orbits of the Virasoro group”, Comm. Math. Phys., 114:1 (1988), 1–53 | DOI | MR | Zbl

[43] S.-T. Yau, S. Nadis, The shape of inner space. String theory and the geometry of the universe's hidden dimensions, Basic Books, New York, 2010, xx+377 pp. | MR | Zbl