@article{RM_2020_75_2_a1,
author = {A. K. Savostianov and S. V. Zelik},
title = {Uniform attractors for measure-driven quintic wave equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {253--320},
year = {2020},
volume = {75},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/}
}
TY - JOUR AU - A. K. Savostianov AU - S. V. Zelik TI - Uniform attractors for measure-driven quintic wave equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 253 EP - 320 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/ LA - en ID - RM_2020_75_2_a1 ER -
A. K. Savostianov; S. V. Zelik. Uniform attractors for measure-driven quintic wave equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 253-320. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/
[1] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866 | DOI | MR | Zbl
[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[3] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., 343, Springer, Heidelberg, 2011, xvi+523 pp. | DOI | MR | Zbl
[4] H. Bahouri, P. Gérard, “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math., 121:1 (1999), 131–175 | DOI | MR | Zbl
[5] J. Ball, “Global attractors for damped semilinear wave equations”, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 31–52 | DOI | MR | Zbl
[6] M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:5 (2009), 1817–1829 | DOI | MR | Zbl
[7] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[8] Measure theory, v. 2, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[9] N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845 | DOI | MR | Zbl
[10] N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742 | DOI | MR | Zbl
[11] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[12] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl
[13] J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp. | MR | Zbl
[14] E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062 | DOI | MR | Zbl
[15] M. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509 | DOI | MR | Zbl
[16] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl
[17] E. Hewitt, “Integration by parts for Stieltjes integrals”, Amer. Math. Monthly, 67:5 (1960), 419–423 | DOI | MR | Zbl
[18] V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincaré, 17:9 (2016), 2555–2584 | DOI | MR | Zbl
[19] L. V. Kapitanskii, “The Cauchy problem for a semilinear wave equation. I”, J. Soviet Math., 49:5 (1990), 1166–1186 | DOI | MR | Zbl
[20] L. V. Kapitanskii, “Cauchy problem for the semilinear wave equation. II”, J. Soviet Math., 62:3 (1992), 2746–2777 | DOI | MR | Zbl
[21] L. Kapitanski, “Global and unique weak solutions of nonlinear wave equations”, Math. Res. Lett., 1:2 (1994), 211–223 | DOI | MR | Zbl
[22] L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323 | DOI | MR | Zbl
[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl
[24] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | MR | Zbl
[25] O. A. Ladyzhenskaya, “Attractors of nonlinear evolution problems with dissipation”, J. Soviet Math., 40:5 (1988), 632–640 | DOI | MR | Zbl
[26] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[27] S. Lu, H. Wu, C. Zhong, “Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces”, Discrete Contin. Dyn. Syst., 13:3 (2005), 701–719 | DOI | MR | Zbl
[28] T.-W. Ma, Banach–Hilbert spaces, vector measures and group representations, World Sci. Publ., River Edge, NJ, 2002, xiv+606 pp. | DOI | MR | Zbl
[29] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl
[30] I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393 | DOI | MR | Zbl
[31] I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531 | DOI | MR | Zbl
[32] A. Savostianov, “Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains”, Adv. Differential Equations, 20:5-6 (2015), 495–530 | MR | Zbl
[33] J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518 | DOI | MR | Zbl
[34] J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Internat. Math. Res. Notices, 1994:7 (1994), 303–309 | DOI | MR | Zbl
[35] C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp. | MR | Zbl
[36] W. A. Strauss, Nonlinear wave equations, CBMS Regional Conf. Ser. in Math., 73, Amer. Math. Soc., Providence, RI, 1989, x+91 pp. | MR | Zbl
[37] M. Struwe, “Globally regular solutions to the $u^5$ Klein–Gordon equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15:3 (1988), 495–513 | MR | Zbl
[38] T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conf. Ser. in Math., 106, Amer. Math. Soc., Providence, RI, 2006, xvi+373 pp. | MR | Zbl
[39] T. Tao, “Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions”, Dyn. Partial Differ. Equ., 3:2 (2006), 93–110 | DOI | MR | Zbl
[40] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl
[41] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. ; North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl
[42] M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | DOI | MR | Zbl
[43] S. Zelik, “Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent”, Commun. Pure Appl. Anal., 3:4 (2004), 921–934 | DOI | MR | Zbl
[44] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392 | DOI | MR | Zbl
[45] S. Zelik, “Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces”, Discrete Contin. Dyn. Syst. Ser. B, 20:3 (2015), 781–810 | DOI | MR | Zbl