Uniform attractors for measure-driven quintic wave equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 253-320

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a detailed study of damped quintic wave equations with non-regular and non-autonomous external forces which are measures in time. In the 3D case with periodic boundary conditions, uniform energy-to-Strichartz estimates are established for the solutions, the existence of uniform attractors in a weak or strong topology in the energy phase space is proved, and their additional regularity is studied along with the possibility of representing them as the union of all complete bounded trajectories. Bibliography: 45 titles.
Keywords: quintic wave equations, vector measures, Strichartz estimates, uniform attractors, smoothness.
@article{RM_2020_75_2_a1,
     author = {A. K. Savostianov and S. V. Zelik},
     title = {Uniform attractors for measure-driven quintic wave equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--320},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/}
}
TY  - JOUR
AU  - A. K. Savostianov
AU  - S. V. Zelik
TI  - Uniform attractors for measure-driven quintic wave equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 253
EP  - 320
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/
LA  - en
ID  - RM_2020_75_2_a1
ER  - 
%0 Journal Article
%A A. K. Savostianov
%A S. V. Zelik
%T Uniform attractors for measure-driven quintic wave equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 253-320
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/
%G en
%F RM_2020_75_2_a1
A. K. Savostianov; S. V. Zelik. Uniform attractors for measure-driven quintic wave equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 253-320. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/