Uniform attractors for measure-driven quintic wave equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 253-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a detailed study of damped quintic wave equations with non-regular and non-autonomous external forces which are measures in time. In the 3D case with periodic boundary conditions, uniform energy-to-Strichartz estimates are established for the solutions, the existence of uniform attractors in a weak or strong topology in the energy phase space is proved, and their additional regularity is studied along with the possibility of representing them as the union of all complete bounded trajectories. Bibliography: 45 titles.
Keywords: quintic wave equations, vector measures, Strichartz estimates, uniform attractors, smoothness.
@article{RM_2020_75_2_a1,
     author = {A. K. Savostianov and S. V. Zelik},
     title = {Uniform attractors for measure-driven quintic wave equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--320},
     year = {2020},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/}
}
TY  - JOUR
AU  - A. K. Savostianov
AU  - S. V. Zelik
TI  - Uniform attractors for measure-driven quintic wave equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 253
EP  - 320
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/
LA  - en
ID  - RM_2020_75_2_a1
ER  - 
%0 Journal Article
%A A. K. Savostianov
%A S. V. Zelik
%T Uniform attractors for measure-driven quintic wave equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 253-320
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/
%G en
%F RM_2020_75_2_a1
A. K. Savostianov; S. V. Zelik. Uniform attractors for measure-driven quintic wave equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 253-320. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a1/

[1] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866 | DOI | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl

[3] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., 343, Springer, Heidelberg, 2011, xvi+523 pp. | DOI | MR | Zbl

[4] H. Bahouri, P. Gérard, “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math., 121:1 (1999), 131–175 | DOI | MR | Zbl

[5] J. Ball, “Global attractors for damped semilinear wave equations”, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 31–52 | DOI | MR | Zbl

[6] M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:5 (2009), 1817–1829 | DOI | MR | Zbl

[7] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl

[8] Measure theory, v. 2, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl

[9] N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845 | DOI | MR | Zbl

[10] N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742 | DOI | MR | Zbl

[11] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[12] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[13] J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp. | MR | Zbl

[14] E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062 | DOI | MR | Zbl

[15] M. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509 | DOI | MR | Zbl

[16] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl

[17] E. Hewitt, “Integration by parts for Stieltjes integrals”, Amer. Math. Monthly, 67:5 (1960), 419–423 | DOI | MR | Zbl

[18] V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincaré, 17:9 (2016), 2555–2584 | DOI | MR | Zbl

[19] L. V. Kapitanskii, “The Cauchy problem for a semilinear wave equation. I”, J. Soviet Math., 49:5 (1990), 1166–1186 | DOI | MR | Zbl

[20] L. V. Kapitanskii, “Cauchy problem for the semilinear wave equation. II”, J. Soviet Math., 62:3 (1992), 2746–2777 | DOI | MR | Zbl

[21] L. Kapitanski, “Global and unique weak solutions of nonlinear wave equations”, Math. Res. Lett., 1:2 (1994), 211–223 | DOI | MR | Zbl

[22] L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323 | DOI | MR | Zbl

[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl

[24] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | MR | Zbl

[25] O. A. Ladyzhenskaya, “Attractors of nonlinear evolution problems with dissipation”, J. Soviet Math., 40:5 (1988), 632–640 | DOI | MR | Zbl

[26] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[27] S. Lu, H. Wu, C. Zhong, “Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces”, Discrete Contin. Dyn. Syst., 13:3 (2005), 701–719 | DOI | MR | Zbl

[28] T.-W. Ma, Banach–Hilbert spaces, vector measures and group representations, World Sci. Publ., River Edge, NJ, 2002, xiv+606 pp. | DOI | MR | Zbl

[29] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl

[30] I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393 | DOI | MR | Zbl

[31] I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531 | DOI | MR | Zbl

[32] A. Savostianov, “Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains”, Adv. Differential Equations, 20:5-6 (2015), 495–530 | MR | Zbl

[33] J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518 | DOI | MR | Zbl

[34] J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Internat. Math. Res. Notices, 1994:7 (1994), 303–309 | DOI | MR | Zbl

[35] C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp. | MR | Zbl

[36] W. A. Strauss, Nonlinear wave equations, CBMS Regional Conf. Ser. in Math., 73, Amer. Math. Soc., Providence, RI, 1989, x+91 pp. | MR | Zbl

[37] M. Struwe, “Globally regular solutions to the $u^5$ Klein–Gordon equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15:3 (1988), 495–513 | MR | Zbl

[38] T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conf. Ser. in Math., 106, Amer. Math. Soc., Providence, RI, 2006, xvi+373 pp. | MR | Zbl

[39] T. Tao, “Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions”, Dyn. Partial Differ. Equ., 3:2 (2006), 93–110 | DOI | MR | Zbl

[40] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl

[41] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. ; North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl

[42] M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | DOI | MR | Zbl

[43] S. Zelik, “Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent”, Commun. Pure Appl. Anal., 3:4 (2004), 921–934 | DOI | MR | Zbl

[44] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392 | DOI | MR | Zbl

[45] S. Zelik, “Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces”, Discrete Contin. Dyn. Syst. Ser. B, 20:3 (2015), 781–810 | DOI | MR | Zbl