Solenoidal attractors of diffeomorphisms of annular sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 197-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An arbitrary diffeomorphism $\Pi$ of an annular set of the form $K=B\times \mathbb{T}$ is considered, where $B$ is a ball in a Banach space and $\mathbb{T}$ is a (finite- or infinite-dimensional) torus. A system of effective sufficient conditions is proposed which ensure that $P$ has a global attractor $A=\bigcap_{n\geqslant 0}\Pi^n(K)$ that can be represented as a generalized solenoid, that is, the inverse limit $\mathbb{T}\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots$, where $G$ is an expanding linear endomorphism of the torus $\mathbb{T}$. Furthermore, the restriction $\Pi|_{A}$ is topologically conjugate to a shift map of the solenoid. Bibliography: 25 titles.
Keywords: diffeomorphism, attractor, generalized solenoid, shift map, hyperbolicity.
Mots-clés : annular set
@article{RM_2020_75_2_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Solenoidal attractors of diffeomorphisms of annular sets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {197--252},
     year = {2020},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_2_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Solenoidal attractors of diffeomorphisms of annular sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 197
EP  - 252
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_2_a0/
LA  - en
ID  - RM_2020_75_2_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Solenoidal attractors of diffeomorphisms of annular sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 197-252
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2020_75_2_a0/
%G en
%F RM_2020_75_2_a0
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Solenoidal attractors of diffeomorphisms of annular sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 2, pp. 197-252. http://geodesic.mathdoc.fr/item/RM_2020_75_2_a0/

[1] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[2] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | MR | Zbl

[3] B. Hasselblatt, A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, Cambridge, 2003, x+424 pp. | DOI | MR | Zbl

[4] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | MR | Zbl

[5] R. F. Williams, “One-dimensional non-wandering sets”, Topology, 6:4 (1967), 473–487 | DOI | MR | Zbl

[6] R. F. Williams, “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 169–203 | DOI | MR | Zbl

[7] R. V. Plykin, “On the geometry of hyperbolic attractors of smooth cascades”, Russian Math. Surveys, 39:6 (1984), 85–131 | DOI | MR | Zbl

[8] A. G. Fedotov, “Williams solenoids and their realization in two-dimensional dynamical systems”, Soviet Math. Dokl., 21:3 (1980), 835–839 | MR | Zbl

[9] A. G. Fedotov, “On the realization of the generalized solenoid as a hyperbolic attractor of sphere diffeomorphisms”, Math. Notes, 94:5 (2013), 681–691 | DOI | DOI | MR | Zbl

[10] A. G. Fedotov, “On the solenoidal representation of the hyperbolic attractor of a diffeomorphism of the sphere”, Math. Notes, 101:1 (2017), 181–183 | DOI | DOI | MR | Zbl

[11] A. Yu. Zhirov, “Solenoidal representations and the homology of hyperbolic attractors of diffeomorphisms of surfaces”, Sb. Math., 188:6 (1997), 799–821 | DOI | DOI | MR | Zbl

[12] D. V. Turaev, L. P. Shil'nikov, “Blue sky catastrophes”, Dokl. Math., 51:3 (1995), 404–407 | MR | Zbl

[13] L. P. Shil'nikov, D. V. Turaev, “Simple bifurcations leading to hyperbolic attractors”, Comput. Math. Appl., 34:2-4 (1997), 173–193 | DOI | MR | Zbl

[14] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[15] S. Newhouse, J. Palis, “Bifurcations of Morse–Smale dynamical systems”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 303–366 | MR | Zbl

[16] Ya. G. Sinai, “Stokhastichnost dinamicheskikh sistem”, Nelineinye volny, Nauka, M., 1979, 192–212

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The annulus principle in the existence problem for a hyperbolic strange attractor”, Sb. Math., 207:4 (2016), 490–518 | DOI | DOI | MR | Zbl

[18] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Hyperbolic annulus principle”, Differ. Equ., 53:3 (2017), 281–301 | DOI | DOI | MR | Zbl

[19] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a version of the hyperbolic annulus principle”, Differ. Equ., 54:8 (2018), 1000–1025 | DOI | DOI | MR | Zbl

[20] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl

[21] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, 2nd ed., Addison-Wesley Publishing Co., Redwood City, CA, 1989, xviii+336 pp. | MR | Zbl

[22] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[23] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 10–92 | DOI | MR | MR | Zbl

[24] Y.-C. Chen, W.-T. Lin, “Family of Smale–Williams solenoid attractors as solutions of differential equations: exact formula and conjugacy”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:10 (2015), 1550137, 9 pp. | DOI | MR | Zbl

[25] V. Afraimovich, S.-B. Hsu, Lectures on chaotic dynamical systems, AMS/IP Stud. Adv. Math., 28, Amer. Math. Soc., Providence, RI; International Press, Somerville, MA, 2003, x+353 pp. | MR | Zbl