Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 187-189
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2020_75_1_a3,
author = {D. V. Treschev},
title = {Volume preserving diffeomorphisms {as~Poincar\'e} maps for volume preserving flows},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {187--189},
year = {2020},
volume = {75},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/}
}
TY - JOUR AU - D. V. Treschev TI - Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 187 EP - 189 VL - 75 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/ LA - en ID - RM_2020_75_1_a3 ER -
D. V. Treschev. Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 187-189. http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/
[1] B. Khesin, S. Kuksin, D. Peralta-Salas, Global, local and dense non-mixing of the $3D$ Euler equation, preprint, 2019