Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 187-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_1_a3,
     author = {D. V. Treschev},
     title = {Volume preserving diffeomorphisms {as~Poincar\'e} maps for volume preserving flows},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {187--189},
     year = {2020},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 187
EP  - 189
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/
LA  - en
ID  - RM_2020_75_1_a3
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 187-189
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/
%G en
%F RM_2020_75_1_a3
D. V. Treschev. Volume preserving diffeomorphisms as Poincaré maps for volume preserving flows. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 187-189. http://geodesic.mathdoc.fr/item/RM_2020_75_1_a3/

[1] B. Khesin, S. Kuksin, D. Peralta-Salas, Global, local and dense non-mixing of the $3D$ Euler equation, preprint, 2019