Etudes of the resolvent
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 147-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the notion of the resolvent and on the Hilbert identities, this paper presents a number of classical results in the theory of differential operators and some of their applications to the theory of automorphic functions and number theory from a unified point of view. For instance, for the Sturm–Liouville operator there is a derivation of the Gelfand–Levitan trace formula, and for the one-dimensional Schrödinger operator a derivation of Faddeev's formula for the characteristic determinant and the Zakharov–Faddeev trace identities. Recent results on the spectral theory of a certain functional-difference operator arising in conformal field theory are then presented. The last section of the survey is devoted to the Laplace operator on a fundamental domain of a Fuchsian group of the first kind on the Lobachevsky plane. An algebraic scheme is given for proving analytic continuation of the integral kernel of the resolvent of the Laplace operator and the Eisenstein–Maass series. In conclusion there is a discussion of the relationship between the values of the Eisenstein–Maass series at Heegner points and the Dedekind zeta-functions of imaginary quadratic fields, and it is explained why pseudo-cusp forms for the case of the modular group do not provide any information about the zeros of the Riemann zeta-function. Bibliography: 50 titles.
Keywords: resolvent of an operator, characteristic determinant of an operator, Hilbert identities, Sturm–Liouville operator, Gelfand–Levitan trace formula, Schrödinger operator, functional-difference operator, Laplace operator on the Lobachevsky plane, eigenfunction expansions, Zakharov–Faddeev trace identities, Eisenstein–Maass series, ,Dedekind zeta-functions of imaginary quadratic fields, Riemann zeta-function.
Mots-clés : Jost solutions
@article{RM_2020_75_1_a2,
     author = {L. A. Takhtajan},
     title = {Etudes of the resolvent},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {147--186},
     year = {2020},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/}
}
TY  - JOUR
AU  - L. A. Takhtajan
TI  - Etudes of the resolvent
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 147
EP  - 186
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/
LA  - en
ID  - RM_2020_75_1_a2
ER  - 
%0 Journal Article
%A L. A. Takhtajan
%T Etudes of the resolvent
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 147-186
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/
%G en
%F RM_2020_75_1_a2
L. A. Takhtajan. Etudes of the resolvent. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 147-186. http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/

[1] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, C. Vafa, “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261:2 (2006), 451–516 | DOI | MR | Zbl

[2] N. I. Akhieser, I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl

[3] E. Bombieri, Pseudo-Laplacians: a special case, talk at the conference “Perspectives on the Riemann hypothesis” (Heilbronn Inst., 2018), 2018 https://www.bristolmathsresearch.org/meeting/heilbronn-perspectives-on-the-riemann-hypothesis/

[4] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, 3-e dop. izd., Nauka, M., 1985, 504 pp. ; Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | Zbl | MR | Zbl

[5] V. S. Buslaev, L. D. Faddeev, “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl

[6] P. Cartier, “Comment l'hypotèse de Riemann ne fut pas prouvée (extraits de deux lettres de P. Cartier à A. Weil, datées du 12 août et du 15 septembre 1979)”, Seminar on number theory (Paris, 1980/1981), Progr. Math., 22, Birkhäuser Boston, Boston, MA, 1982, 35–48 | MR | Zbl

[7] Y. Colin de Verdière, “Pseudo-laplaciens. I”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 275–286 | DOI | MR | Zbl

[8] Y. Colin de Verdière, “Pseudo-laplaciens. II”, Ann. Inst. Fourier (Grenoble), 33:2 (1983), 87–113 | DOI | MR | Zbl

[9] M. Deuring, “Imaginäre quadratische Zahlkörper mit der Klassenzahl 1”, Math. Z., 37:1 (1933), 405–415 | DOI | MR | Zbl

[10] L. A. Dikii, “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, UMN, 13:3(81) (1958), 111–143 ; L. A. Dikiĭ, “Trace formulas for Sturm–Liouville differential operators”, Amer. Math. Soc. Transl. Ser. 2, 18, Amer. Math. Soc., Providence, RI, 1961, 81–115 | MR | Zbl | DOI | MR | Zbl

[11] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90 | DOI | MR | Zbl

[12] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57–119 ; L. D. Faddeyev, B. Seckler, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4 (1963), 72–104 | MR | Zbl | DOI | MR | Zbl

[13] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Kraevye zadachi matematicheskoi fiziki. 2, Sbornik rabot. Posvyaschaetsya pamyati Vladimira Andreevicha Steklova v svyazi so stoletiem so dnya ego rozhdeniya, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 314–336 ; L. D. Faddeev, “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 139–166 | MR | Zbl | DOI

[14] L. D. Faddeev, “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Tr. MMO, 17, Izd-vo Mosk. un-ta, M., 1967, 323–350 ; L. D. Faddeev, “Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobachevskiĭ plane”, Trans. Moscow Math. Soc., 17 (1969), 357–386 | MR | Zbl

[15] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 3, VINITI, M., 1974, 93–180 ; L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | MR | Zbl | DOI

[16] L. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999 (Dijon, 1999), v. I, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 | MR | Zbl

[17] J. D. Fay, “Fourier coefficients of the resolvent for a Fuchsian group”, J. Reine Angew. Math., 293/294 (1977), 143–203 | DOI | MR | Zbl

[18] P. Garrett, Self-adjoint operators on automorphic forms, talk at the conference “Perspectives on the Riemann Hypothesis” (Heilbronn Inst., 2018), 2018, https://www.bristolmathsresearch.org/meeting/heilbronn-perspectives-on-the-riemann-hypothesis/

[19] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | MR | Zbl

[20] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii, 6, Nauka, M., 1966, 512 pp. ; I. M. Gel'fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xvi+426 pp. | MR | Zbl | MR | Zbl

[21] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl

[22] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | Zbl | MR | Zbl

[23] A. Grassi, Y. Hatsuda, M. Mariño, “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17:11 (2016), 3177–3235 | DOI | MR | Zbl

[24] H. Heilbronn, “On the class-number in imaginary quadratic fields”, Quart. J. Math. Oxford Ser., 5 (1934), 150–160 | DOI | Zbl

[25] D. A. Hejhal, “Some observations concerning eigenvalues of the Laplacian and Dirichlet $L$-series”, Recent progress in analytic number theory (Durham, 1979), v. 2, Academic Press, Inc., London–New York, 1981, 95–110 | MR | Zbl

[26] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp. | DOI | MR | Zbl

[27] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401 | DOI | MR | Zbl

[28] F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, v. I, Grundlehren Math. Wiss., 24, J. Springer, Berlin, 1926, xiii+385 pp. | MR | Zbl

[29] S. Leng, $\operatorname{SL}_2(\mathbb R)$, Mir, M., 1977, 430 pp. ; S. Lang, $\operatorname{SL}_2(\mathbb R)$, Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975, xvi+428 pp. | MR | MR | Zbl

[30] A. Laptev, L. Schimmer, L. A. Takhtajan, “Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves”, Geom. Funct. Anal., 26:1 (2016), 288–305 | DOI | MR | Zbl

[31] P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience, New York, 2002, xx+580 pp. | MR | Zbl

[32] P. D. Laks, R. S. Fillips, Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979, 324 pp.; P. D. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. of Math. Stud., 87, Princeton Univ. Press, Princeton, NJ, 1976, x+300 pp. | DOI | MR | Zbl

[33] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 671 pp. ; B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | Zbl | MR | Zbl

[34] Yu. V. Linnik, “Asimptoticheskoe raspredelenie privedennykh binarnykh kvadratichnykh form v svyazi s geometriei Lobachevskogo”, Izbrannye trudy, v. 1, Nauka, L., 1979, 141–200

[35] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977, 331 pp. ; V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | MR | Zbl | DOI | MR | Zbl

[36] L. J. Mordell, “On the Riemann hypothesis and imaginary quadratic fields with a given class number”, J. London Math. Soc., 9:4 (1934), 289–298 | DOI | MR | Zbl

[37] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5(371) (2006), 89–156 | DOI | MR | Zbl

[38] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N. S.), 20 (1956), 47–87 | MR | Zbl

[39] A. S. Shvarts, “Ellipticheskie operatory v kvantovoi teorii polya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 17, VINITI, M., 1981, 113–173 ; A. S. Shvarts, “Elliptic operators in quantum field theory”, J. Soviet Math., 21:4 (1983), 551–601 | MR | Zbl | DOI

[40] C. Siegel, “Über die Classenzahl quadratischer Zahlkörper”, Acta Arith., 1 (1935), 83–86 | DOI | Zbl

[41] L. A. Takhtadzhyan, Kvantovaya mekhanika dlya matematikov, NITs "Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011, 496 pp.; L. A. Takhtajan, Quantum mechanics for mathematicians, Grad. Stud. Math., 95, Amer. Math. Soc., Providence, RI, 2008, xvi+387 pp. | DOI | MR | Zbl

[42] L. A. Takhtadzhyan, A. Yu. Alekseev, I. Ya. Arefeva, M. A. Semenov-Tyan-Shanskii, E. K. Sklyanin, F. A. Smirnov, S. L. Shatashvili, “Nauchnoe nasledie L. D. Faddeeva. Obzor rabot”, UMN, 72:6(438) (2017), 3–112 | DOI | MR | Zbl

[43] L. A. Takhtadzhyan, L. D. Faddeev, “Spektralnaya teoriya odnogo funktsionalno-raznostnogo operatora konformnoi teorii polya”, Izv. RAN. Ser. matem., 79:2 (2015), 181–204 | DOI | MR | Zbl

[44] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii”, Tr. MIAN SSSR, 153 (1981), 3–171 ; A. B. Venkov, “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163 | MR | Zbl | MR | Zbl

[45] A. B. Venkov, V. L. Kalinin, L. D. Faddeev, “Nearifmeticheskii vyvod formuly sleda Selberga”, Differentsialnaya geometriya, gruppy Li i mekhanika, Zap. nauch. sem. LOMI, 37, Izd-vo “Nauka”, Leningrad. otd., L., 1973, 5–42 ; A. B. Venkov, V. L. Kalinin, L. D. Faddeev, “A nonarithmetic derivation of the Selberg trace formula”, J. Soviet Math., 8 (1977), 171–199 | MR | Zbl | DOI

[46] I. M. Vinogradov, “O srednem znachenii chisla klassov chisto korennykh form otritsatelnogo opredelitelya”, Soobsch. Khark. matem. o-va, 16 (1917), 10–38 ; Р�збранныРμ труды, Р�Р·Рґ-РІРѕ РђРќ РЎРЎРЎР , Рњ., 1952, 29–53

[47] A. I. Vinogradov, L. A. Takhtadzhyan, “Ob asimptotikakh Linnika–Skubenko”, Dokl. AN SSSR, 253:4 (1980), 777–780 | MR | Zbl

[48] A. I. Vinogradov, L. A. Takhtadzhyan, “Analogi formuly Vinogradova–Gaussa v kriticheskoi polose”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego devyanostoletiyu, Tr. MIAN SSSR, 158, 1981, 45–68 ; A. I. Vinogradov, L. A. Takhtadzhyan, “Analogues of the Vinogradov–Gauss formula in the critical strip”, Proc. Steklov Inst. Math., 158 (1983), 47–71 | MR | Zbl

[49] D. Zagier, “Eisenstein series and the Riemann zeta-function”, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fund. Res., Bombay, 1981, 275–301 | DOI | MR | Zbl

[50] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega–de Frisa – vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl