Mots-clés : Jost solutions
@article{RM_2020_75_1_a2,
author = {L. A. Takhtajan},
title = {Etudes of the resolvent},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {147--186},
year = {2020},
volume = {75},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/}
}
L. A. Takhtajan. Etudes of the resolvent. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 147-186. http://geodesic.mathdoc.fr/item/RM_2020_75_1_a2/
[1] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, C. Vafa, “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261:2 (2006), 451–516 | DOI | MR | Zbl
[2] N. I. Akhieser, I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl
[3] E. Bombieri, Pseudo-Laplacians: a special case, talk at the conference “Perspectives on the Riemann hypothesis” (Heilbronn Inst., 2018), 2018 https://www.bristolmathsresearch.org/meeting/heilbronn-perspectives-on-the-riemann-hypothesis/
[4] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, 3-e dop. izd., Nauka, M., 1985, 504 pp. ; Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | Zbl | MR | Zbl
[5] V. S. Buslaev, L. D. Faddeev, “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl
[6] P. Cartier, “Comment l'hypotèse de Riemann ne fut pas prouvée (extraits de deux lettres de P. Cartier à A. Weil, datées du 12 août et du 15 septembre 1979)”, Seminar on number theory (Paris, 1980/1981), Progr. Math., 22, Birkhäuser Boston, Boston, MA, 1982, 35–48 | MR | Zbl
[7] Y. Colin de Verdière, “Pseudo-laplaciens. I”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 275–286 | DOI | MR | Zbl
[8] Y. Colin de Verdière, “Pseudo-laplaciens. II”, Ann. Inst. Fourier (Grenoble), 33:2 (1983), 87–113 | DOI | MR | Zbl
[9] M. Deuring, “Imaginäre quadratische Zahlkörper mit der Klassenzahl 1”, Math. Z., 37:1 (1933), 405–415 | DOI | MR | Zbl
[10] L. A. Dikii, “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, UMN, 13:3(81) (1958), 111–143 ; L. A. Dikiĭ, “Trace formulas for Sturm–Liouville differential operators”, Amer. Math. Soc. Transl. Ser. 2, 18, Amer. Math. Soc., Providence, RI, 1961, 81–115 | MR | Zbl | DOI | MR | Zbl
[11] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90 | DOI | MR | Zbl
[12] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57–119 ; L. D. Faddeyev, B. Seckler, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4 (1963), 72–104 | MR | Zbl | DOI | MR | Zbl
[13] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Kraevye zadachi matematicheskoi fiziki. 2, Sbornik rabot. Posvyaschaetsya pamyati Vladimira Andreevicha Steklova v svyazi so stoletiem so dnya ego rozhdeniya, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 314–336 ; L. D. Faddeev, “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 139–166 | MR | Zbl | DOI
[14] L. D. Faddeev, “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Tr. MMO, 17, Izd-vo Mosk. un-ta, M., 1967, 323–350 ; L. D. Faddeev, “Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobachevskiĭ plane”, Trans. Moscow Math. Soc., 17 (1969), 357–386 | MR | Zbl
[15] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 3, VINITI, M., 1974, 93–180 ; L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | MR | Zbl | DOI
[16] L. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999 (Dijon, 1999), v. I, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 | MR | Zbl
[17] J. D. Fay, “Fourier coefficients of the resolvent for a Fuchsian group”, J. Reine Angew. Math., 293/294 (1977), 143–203 | DOI | MR | Zbl
[18] P. Garrett, Self-adjoint operators on automorphic forms, talk at the conference “Perspectives on the Riemann Hypothesis” (Heilbronn Inst., 2018), 2018, https://www.bristolmathsresearch.org/meeting/heilbronn-perspectives-on-the-riemann-hypothesis/
[19] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | MR | Zbl
[20] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii, 6, Nauka, M., 1966, 512 pp. ; I. M. Gel'fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xvi+426 pp. | MR | Zbl | MR | Zbl
[21] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl
[22] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | Zbl | MR | Zbl
[23] A. Grassi, Y. Hatsuda, M. Mariño, “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17:11 (2016), 3177–3235 | DOI | MR | Zbl
[24] H. Heilbronn, “On the class-number in imaginary quadratic fields”, Quart. J. Math. Oxford Ser., 5 (1934), 150–160 | DOI | Zbl
[25] D. A. Hejhal, “Some observations concerning eigenvalues of the Laplacian and Dirichlet $L$-series”, Recent progress in analytic number theory (Durham, 1979), v. 2, Academic Press, Inc., London–New York, 1981, 95–110 | MR | Zbl
[26] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp. | DOI | MR | Zbl
[27] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401 | DOI | MR | Zbl
[28] F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, v. I, Grundlehren Math. Wiss., 24, J. Springer, Berlin, 1926, xiii+385 pp. | MR | Zbl
[29] S. Leng, $\operatorname{SL}_2(\mathbb R)$, Mir, M., 1977, 430 pp. ; S. Lang, $\operatorname{SL}_2(\mathbb R)$, Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975, xvi+428 pp. | MR | MR | Zbl
[30] A. Laptev, L. Schimmer, L. A. Takhtajan, “Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves”, Geom. Funct. Anal., 26:1 (2016), 288–305 | DOI | MR | Zbl
[31] P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience, New York, 2002, xx+580 pp. | MR | Zbl
[32] P. D. Laks, R. S. Fillips, Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979, 324 pp.; P. D. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. of Math. Stud., 87, Princeton Univ. Press, Princeton, NJ, 1976, x+300 pp. | DOI | MR | Zbl
[33] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 671 pp. ; B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | Zbl | MR | Zbl
[34] Yu. V. Linnik, “Asimptoticheskoe raspredelenie privedennykh binarnykh kvadratichnykh form v svyazi s geometriei Lobachevskogo”, Izbrannye trudy, v. 1, Nauka, L., 1979, 141–200
[35] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977, 331 pp. ; V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | MR | Zbl | DOI | MR | Zbl
[36] L. J. Mordell, “On the Riemann hypothesis and imaginary quadratic fields with a given class number”, J. London Math. Soc., 9:4 (1934), 289–298 | DOI | MR | Zbl
[37] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5(371) (2006), 89–156 | DOI | MR | Zbl
[38] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N. S.), 20 (1956), 47–87 | MR | Zbl
[39] A. S. Shvarts, “Ellipticheskie operatory v kvantovoi teorii polya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 17, VINITI, M., 1981, 113–173 ; A. S. Shvarts, “Elliptic operators in quantum field theory”, J. Soviet Math., 21:4 (1983), 551–601 | MR | Zbl | DOI
[40] C. Siegel, “Über die Classenzahl quadratischer Zahlkörper”, Acta Arith., 1 (1935), 83–86 | DOI | Zbl
[41] L. A. Takhtadzhyan, Kvantovaya mekhanika dlya matematikov, NITs "Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011, 496 pp.; L. A. Takhtajan, Quantum mechanics for mathematicians, Grad. Stud. Math., 95, Amer. Math. Soc., Providence, RI, 2008, xvi+387 pp. | DOI | MR | Zbl
[42] L. A. Takhtadzhyan, A. Yu. Alekseev, I. Ya. Arefeva, M. A. Semenov-Tyan-Shanskii, E. K. Sklyanin, F. A. Smirnov, S. L. Shatashvili, “Nauchnoe nasledie L. D. Faddeeva. Obzor rabot”, UMN, 72:6(438) (2017), 3–112 | DOI | MR | Zbl
[43] L. A. Takhtadzhyan, L. D. Faddeev, “Spektralnaya teoriya odnogo funktsionalno-raznostnogo operatora konformnoi teorii polya”, Izv. RAN. Ser. matem., 79:2 (2015), 181–204 | DOI | MR | Zbl
[44] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii”, Tr. MIAN SSSR, 153 (1981), 3–171 ; A. B. Venkov, “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163 | MR | Zbl | MR | Zbl
[45] A. B. Venkov, V. L. Kalinin, L. D. Faddeev, “Nearifmeticheskii vyvod formuly sleda Selberga”, Differentsialnaya geometriya, gruppy Li i mekhanika, Zap. nauch. sem. LOMI, 37, Izd-vo “Nauka”, Leningrad. otd., L., 1973, 5–42 ; A. B. Venkov, V. L. Kalinin, L. D. Faddeev, “A nonarithmetic derivation of the Selberg trace formula”, J. Soviet Math., 8 (1977), 171–199 | MR | Zbl | DOI
[46] I. M. Vinogradov, “O srednem znachenii chisla klassov chisto korennykh form otritsatelnogo opredelitelya”, Soobsch. Khark. matem. o-va, 16 (1917), 10–38 ; Р�збранныРμ труды, Р�Р·Рґ-РІРѕ РђРќ РЎРЎРЎР , Рњ., 1952, 29–53
[47] A. I. Vinogradov, L. A. Takhtadzhyan, “Ob asimptotikakh Linnika–Skubenko”, Dokl. AN SSSR, 253:4 (1980), 777–780 | MR | Zbl
[48] A. I. Vinogradov, L. A. Takhtadzhyan, “Analogi formuly Vinogradova–Gaussa v kriticheskoi polose”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego devyanostoletiyu, Tr. MIAN SSSR, 158, 1981, 45–68 ; A. I. Vinogradov, L. A. Takhtadzhyan, “Analogues of the Vinogradov–Gauss formula in the critical strip”, Proc. Steklov Inst. Math., 158 (1983), 47–71 | MR | Zbl
[49] D. Zagier, “Eisenstein series and the Riemann zeta-function”, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fund. Res., Bombay, 1981, 275–301 | DOI | MR | Zbl
[50] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega–de Frisa – vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl