On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1135-1157
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2019_74_6_a9,
     author = {A. A. Borisenko and A. Yu. Vesnin and N. M. Ivochkina},
     title = {On the 100th anniversary of the birth of {Aleksei} {Vasil'evich} {Pogorelov}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1135--1157},
     year = {2019},
     volume = {74},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a9/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - A. Yu. Vesnin
AU  - N. M. Ivochkina
TI  - On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 1135
EP  - 1157
VL  - 74
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a9/
LA  - en
ID  - RM_2019_74_6_a9
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A A. Yu. Vesnin
%A N. M. Ivochkina
%T On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 1135-1157
%V 74
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2019_74_6_a9/
%G en
%F RM_2019_74_6_a9
A. A. Borisenko; A. Yu. Vesnin; N. M. Ivochkina. On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1135-1157. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a9/

[1] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, RI, 1973, vi+669 pp. | MR | MR | Zbl | Zbl

[2] A. A. Borisenko, Alexey Vasilyevich Pogorelov, the mathematician of an incredible power, 2008, 21 pp., arXiv: 0810.2641 | MR | Zbl

[3] D. Hilbert, “Mathematische Probleme”, Gött. Nachr., 1900 (1900), 253–297 | Zbl

[4] G. Darboux, Leçons sur la théorie générale des surfaces, v. III, Gauthier-Villars, Paris, 1894, xvi+501 pp. | MR | Zbl

[5] G. Hamel, “Über die Geometrien, in denen die Geraden die Kürzesten sind”, Math. Ann., 57:2 (1903), 231–264 | DOI | MR | Zbl

[6] H. Busemann, The geometry of geodesics, Academic Press Inc., New York, NY, 1955, x+422 pp. | MR | MR | Zbl | Zbl

[7] A. V. Pogorelov, “A complete solution of Hilbert's fourth problem”, Soviet Math. Dokl., 14 (1973), 46–49 | MR | Zbl

[8] A. V. Pogorelov, Hilbert's fourth problem, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1979, vi+97 pp. | MR | MR | Zbl

[9] R. V. Ambartzumian, “A note on pseudo-metrics on the plane”, Z. Wahrscheinlichkeitstheorie verw. Geb., 37:2 (1976), 145–155 | DOI | MR | Zbl

[10] H. Busemann, “Book review: Hilbert's fourth problem”, Bull. Amer. Math. Soc. (N. S.), 4:1 (1981), 87–90 | DOI | MR

[11] Z. I. Szabó, “Hilbert's fourth problem. I”, Adv. Math., 59:3 (1986), 185–301 | DOI | MR | Zbl

[12] R. Alexander, “Zonoid theory and Hilbert's fourth problem”, Geom. Dedicata, 28:2 (1988), 199–211 | DOI | MR | Zbl

[13] J. C. Álvarez Paiva, “Symplectic geometry and Hilbert's fourth problem”, J. Differential Geom., 69:2 (2005), 353–378 | DOI | MR | Zbl

[14] J. C. Álvarez Pavia, J. Barbosa Gomes, Periodic solutions of Hilbert's fourth problem, 2018, 20 pp., arXiv: 1809.02783v1

[15] A. Papadopoulos, “Hilbert's fourth problem”, Handbook of Hilbert geometry, IRMA Lect. Math. Theor. Phys., 22, Eur. Math. Soc., Zürich, 2014, 391–431 | DOI | MR | Zbl

[16] L. Nirenberg, “On nonlinear elliptic partial differential equations and Hölder continuity”, Comm. Pure Appl. Math., 6 (1953), 103–156 | DOI | MR | Zbl

[17] A. V. Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 106 pp. | MR | MR | Zbl

[18] A. V. Pogorelov, “Monge–Ampère multidimensional equation $\det\|z_{ij}\|=\phi(z_1,\dots, z_n,z,x_1,\dots,x_n)$”, Rev. Math. Math. Phys., 10:1 (1995), 1–103 | MR | Zbl | Zbl

[19] A. D. Aleksandrov, “Zadacha Dirikhle dlya uravneniya $\operatorname{Det}\|z_{ij}\|=\varphi(z_1,\dots,z_n,\break z_1,\dots,z_n)$”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 13:1 (1958), 5–24 | Zbl

[20] A. V. Pogorelov, “On the regularity of generalized solutions of the equation $\det(\partial^2u/\partial x^i\partial x^j)=\varphi(x^1,x^2,\dots,x^n)>0$”, Soviet Math. Dokl., 12 (1971), 1436–1440 | MR | Zbl

[21] A. V. Pogorelov, “The Dirichlet problem for the $n$-dimensional analogue of the Monge–Ampère equation”, Soviet Math. Dokl., 12 (1971), 1727–1731 | MR | Zbl

[22] E. Calabi, “Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[23] Shiu Yuen Cheng, Shing Tung Yau, “On the regularity of the Monge–Ampère equation $\det(\partial^2u/\partial x_i\partial x_j)=F(x,u)$”, Comm. Pure Appl. Math., 30:1 (1977), 41–68 | DOI | MR | Zbl

[24] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | MR | MR | Zbl | Zbl

[25] N. M. Ivochkina, “Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces”, J. Soviet Math., 28:5 (1985), 684–688 | DOI | MR | Zbl

[26] L. C. Evans, “Classical solutions of fully nonlinear, convex, second-order elliptic equations”, Comm. Pure Appl. Math., 35:3 (1982), 333–363 | DOI | MR | Zbl

[27] N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain”, Math. USSR-Izv., 22:1 (1984), 67–97 | DOI | MR | Zbl

[28] N. M. Ivochkina, “A priori estimate of $\|u\|_{C^2(\overline\Omega)}$ for convex solutions of the Dirichlet problem for the Monge–Ampère equations”, J. Soviet Math., 21:5 (1983), 689–697 | DOI | MR | Zbl

[29] N. M. Ivochkina, “Harnack's inequality for elliptic equations and the Hölder property of their solutions”, J. Soviet Math., 21:5 (1983), 851–863 | DOI | MR | Zbl

[30] L. Caffarelli, L. Nirenberg, J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl

[31] A. V. Pogorelov, “Existence of a closed convex hypersurface with a prescribed function of the principal radii of curvature”, Soviet Math. Dokl., 12 (1971), 494–497 | MR | Zbl

[32] L. Gårding, “An inequality for hyperbolic polynomials”, J. Math. Mech., 8:6 (1959), 957–965 | DOI | MR | Zbl

[33] N. M. Ivochkina, “A description of the stability cones generated by differential operators of Monge–Ampère type”, Math. USSR-Sb., 50:1 (1985), 259–268 | DOI | MR | Zbl

[34] N. Ivochkina, N. Filimonenkova, “On the backgrounds of the theory of $m$-Hessian equations”, Commun. Pure Appl. Anal., 12:4 (2013), 1687–1703 | DOI | MR | Zbl

[35] N. S. Trudinger, “The Dirichlet problem for the prescribed curvature equations”, Arch. Rational Mech. Anal., 111:2 (1990), 153–179 | DOI | MR | Zbl

[36] N. M. Ivochkina, “From Gårding's cones to $p$-convex hypersurfaces”, J. Math. Sci. (N. Y.), 201:5 (2014), 634–644 | DOI | MR | Zbl

[37] N. M. Ivochkina, N. V. Filimonenkova, Geometricheskie modeli v teorii nelineinykh differentsialnykh uravnenii, Preprint S.-Peterb. matem. o-va No 6, SPbGU, SPb., 2016, 31 pp. http://www.mathsoc.spb.ru/preprint/2016/index.html

[38] N. M. Ivochkina, N. V. Filimonenkova, “On algebraic and geometric conditions in the theory of Hessian equations”, J. Fixed Point Theory Appl., 16:1-2 (2014), 11–25 | DOI | MR | Zbl

[39] N. M. Ivochkina, N. V. Filimonenkova, “On two symmetries in the theory of $m$-Hessian operators”, Topol. Methods Nonlinear Anal., 52:1 (2018), 31–47 | DOI | MR | Zbl

[40] Feida Jiang, N. S. Trudinger, “On Pogorelov estimates in optimal transportation and geometric optics”, Bull. Math. Sci., 4:3 (2014), 407–431 | DOI | MR | Zbl

[41] J. Liu, N. S. Trudinger, “On Pogorelov estimates for Monge–Ampère type equations”, Discrete Contin. Dyn. Syst., 28:3 (2010), 1121–1135 | DOI | MR | Zbl

[42] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl

[43] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR-Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl

[44] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256 | DOI | DOI | MR | Zbl

[45] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374 | DOI | DOI | MR | Zbl

[46] F. Klein, Vorlesungen über nicht-euklidische Geometrie, Grundlehren Math. Wiss., 26, 3. Aufl., J. Springer, Berlin, 1928, xii+326 pp. | MR | Zbl

[47] F. Löbell, “Beispiele geschlossener dreidimensionaler Clifford–Kleinischer Räume negativer Krümmung”, Ber. Verh. Sächs. Akad. Leipzig, Math.-Phys. Kl., 83 (1931), 168–174 | Zbl

[48] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Siberian Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl

[49] A. Yu. Vesnin, “Volumes of hyperbolic Löbell 3-manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | DOI | MR | Zbl

[50] A. Yu. Vesnin, A. D. Mednykh, “Three-dimensional hyperelliptic manifolds and Hamiltonian graphs”, Siberian Math. J., 40:4 (1999), 628–643 | DOI | MR | Zbl

[51] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[52] V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russian Math. Surveys, 71:6 (2016), 1137–1139 | DOI | DOI | MR | Zbl

[53] F. Cataldo, A. Graovac, O. Ori (eds.), The mathematics and topology of fullerenes, Carbon Mater.: Chem. Phys., 4, Springer, Cham, 2011, xiv+289 pp. | DOI

[54] P. W. Fowler, D. E. Manolopoulos, An atlas of fullerenes, Internat. Ser. Monogr. Chem., 30, The Clarendon Press, Oxford Univ. Press, New York, 1995, viii+392 pp.

[55] C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebr. Geom. Topol., 9:2 (2009), 1225–1254 | DOI | MR | Zbl

[56] T. Inoue, “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl

[57] T. Inoue, “Exploring the list of smallest right-angled hyperbolic polyhedra”, Exp. Math., 2019, Published online | DOI