On a local holomorphic version of the fundamental theorem of projective geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1123-1125
@article{RM_2019_74_6_a5,
author = {N. G. Kruzhilin},
title = {On a~local holomorphic version of the fundamental theorem of projective geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1123--1125},
year = {2019},
volume = {74},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a5/}
}
TY - JOUR AU - N. G. Kruzhilin TI - On a local holomorphic version of the fundamental theorem of projective geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 1123 EP - 1125 VL - 74 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a5/ LA - en ID - RM_2019_74_6_a5 ER -
N. G. Kruzhilin. On a local holomorphic version of the fundamental theorem of projective geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1123-1125. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a5/
[1] N. Mok, S.-K. Yeung, Complex analysis and geometry, Univ. Ser. Math., eds. V. Ancona, A. Silva, Plenum Press, New York, 1993, 253–270 | DOI | MR | Zbl
[2] B. Shiffman, Enseign. Math. (2), 41:3-4 (1995), 201–215 | MR | Zbl
[3] R. McCallum, Bull. Aust. Math. Soc., 80:2 (2009), 350–352 | DOI | MR
[4] S. Bochner, W. T. Martin, Several complex variables, Princeton Math. Ser., 10, Princeton Univ. Press, Princeton, NJ, 1948, ix+216 pp. | MR | Zbl