@article{RM_2019_74_6_a2,
author = {D. V. Prokhorov and V. D. Stepanov and E. P. Ushakova},
title = {Characterization of the function spaces associated with weighted {Sobolev} spaces of the first order on the real line},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1075--1115},
year = {2019},
volume = {74},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a2/}
}
TY - JOUR AU - D. V. Prokhorov AU - V. D. Stepanov AU - E. P. Ushakova TI - Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 1075 EP - 1115 VL - 74 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a2/ LA - en ID - RM_2019_74_6_a2 ER -
%0 Journal Article %A D. V. Prokhorov %A V. D. Stepanov %A E. P. Ushakova %T Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 1075-1115 %V 74 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2019_74_6_a2/ %G en %F RM_2019_74_6_a2
D. V. Prokhorov; V. D. Stepanov; E. P. Ushakova. Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1075-1115. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a2/
[1] A. A. Belyaev, A. A. Shkalikov, “Multipliers in spaces of Bessel potentials: the case of indices of nonnegative smoothness”, Math. Notes, 102:5 (2017), 632–644 | DOI | DOI | MR | Zbl
[2] A. A. Belyaev, A. A. Shkalikov, “Multipliers in Bessel potential spaces with smoothness indices of different sign”, St. Petersburg Math. J., 30:2 (2019), 203–218 | DOI | MR | Zbl
[3] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[4] T. Chen, G. Sinnamon, “Generalized Hardy operators and normalizing measures”, J. Inequal. Appl., 7:6 (2002), 829–866 | MR | Zbl
[5] B. Ćurgus, T. T. Read, “Discreteness of the spectrum of second-order differential operators and associated embeddings theorems”, J. Differential Equations, 184:2 (2002), 526–548 | DOI | MR | Zbl
[6] G. Di Fratta, A. Fiorenza, “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal., 70:7 (2009), 2582–2592 | DOI | MR | Zbl
[7] S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8-9 (2015), 877–897 | DOI | MR | Zbl
[8] C. Fefferman, “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77:4 (1971), 587–588 | DOI | MR | Zbl
[9] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl
[10] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl
[11] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig, “An equivalence theorem for integral conditions related to Hardy's inequality”, Real Anal. Exchange, 29:2 (2003/2004), 867–880 | DOI | MR | Zbl
[12] A. Gogatishvili, J. Lang, “The generalized Hardy operators with kernel and variable integral limits in Banach function spaces”, J. Inequal. Appl., 4:1 (1999), 1–16 | MR | Zbl
[13] A. Gogatishvili, L. Pick, F. Soudský, “Characterization of associate spaces of weighted Lorentz spaces with applications”, Studia Math., 224:1 (2014), 1–23 | DOI | MR | Zbl
[14] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | DOI | MR | Zbl
[15] M. L. Gol'dman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl
[16] M. L. Goldman, P. P. Zabreiko, “Optimal reconstruction of a Banach function space from a cone of nonnegative functions”, Proc. Steklov Inst. Math., 284 (2014), 133–147 | DOI | DOI | MR | Zbl
[17] H. P. Heinig, G. Sinnamon, “Mapping properties of integral averaging operators”, Studia Math., 129:2 (1998), 157–177 | MR | Zbl
[18] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl
[19] P. Jain, A. P. Singh, M. Singh, V. D. Stepanov, “Sawyer duality principle in grand Lebesgue spaces”, Dokl. Math., 97:1 (2018), 18–19 | DOI | DOI | MR | Zbl
[20] P. Jain, A. P. Singh, M. Singh, V. D. Stepanov, “Sawyer's duality principle for grand Lebesgue spaces”, Math. Nachr., 292:4 (2019), 841–849 | DOI | MR | Zbl
[21] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl
[22] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl
[23] A. Kufner, L.-E. Persson, N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2017, xv+459 pp. | DOI | MR | Zbl
[24] A. Kufner, L.-E. Persson, N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp. | DOI | MR | Zbl
[25] K. Leśnik, L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951 | DOI | MR | Zbl
[26] V. G. Maz'ya, “On certain integral inequalities for functions of many variables”, J. Soviet Math., 1:2 (1973), 205–234 | DOI | MR | Zbl
[27] V. Maz'ya, “Conductor inequalities and criteria for Sobolev type two-weight imbeddings”, J. Comput. Appl. Math., 194:1 (2006), 94–114 | DOI | MR | Zbl
[28] V. G. Maz'ya, I. E. Verbitsky, “Boundedness and compactness criteria for the one-dimensional Schrödinger operator”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2000, 369–382 | DOI | MR | Zbl
[29] K. T. Mynbaev, M. O. Otelbaev, Vesovye funktsionalnye prostranstva i spektr differentsialnykh operatorov, Nauka, M., 1988, 286 pp. | MR | Zbl
[30] M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and Sobolev-type embedding inequalities”, Proc. Steklov Inst. Math., 293 (2016), 228–254 | DOI | DOI | MR | Zbl
[31] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl
[32] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038 | DOI | MR | Zbl
[33] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Math., 78:4 (2014), 836–853 | DOI | DOI | MR | Zbl
[34] R. Oinarov, M. Otelbaev, “A criterion for a general Sturm–Liouville operator to have a discrete spectrum, and a related imbedding theorem”, Differ. Equ., 24:4 (1988), 402–408 | MR | Zbl
[35] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Res. Notes Math. Ser., 129, Longman Scientific Technical, Harlow, 1990, xii+333 pp. | MR | Zbl
[36] L.-E. Persson, V. D. Stepanov, “Weighted integral inequalities with the geometric mean operator”, J. Inequal. Appl., 7:5 (2002), 727–746 | MR | Zbl
[37] L.-E. Persson, V. Stepanov, P. Wall, “Some scales of equivalent weight characterizations of Hardy's inequality: the case $q
$”, Math. Inequal. Appl., 10:2 (2007), 267–279 | DOI | MR | Zbl[38] D. V. Prokhorov, “On a weighted Sobolev space on real line”, Eurasian Math. J., 8:2 (2017), 22–30 | MR
[39] D. V. Prokhorov, V. D. Stepanov, “On inequalities with measures of Sobolev type embedding theorems on open sets of the real axis”, Siberian Math. J., 43:4 (2002), 694–707 | DOI | MR | Zbl
[40] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR | Zbl
[41] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Dokl. Math., 93:1 (2016), 78–81 | DOI | DOI | MR | Zbl
[42] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov integral operators”, Part I, Proc. Steklov Inst. Math., 300, suppl. 2 (2018), 1–112 ; Part II, Proc. Steklov Inst. Math., 302, suppl. 1 (2018), 1–61 | DOI | DOI | DOI | MR | Zbl
[43] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5-6 (2017), 890–912 | DOI | MR | Zbl
[44] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Spaces associated with weighted Sobolev spaces on the real line”, Dokl. Math., 98:1 (2018), 373–376 | DOI | DOI | Zbl
[45] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl
[46] J.-G. Bak, A. A. Shkalikov, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Math. Notes, 71:5 (2002), 587–594 | DOI | DOI | MR | Zbl
[47] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl
[48] V. D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions”, Math. Notes, 98:6 (2015), 957–970 | DOI | DOI | MR | Zbl
[49] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl
[50] V. D. Stepanov, E. P. Ushakova, “On the geometric mean operator with variable limits of integration”, Proc. Steklov Inst. Math., 260:1 (2008), 254–278 | DOI | MR | Zbl
[51] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl
[52] V. D. Stepanov, E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces”, Banach J. Math. Anal., 4:1 (2010), 28–52 | DOI | MR | Zbl
[53] V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov operators and the duality principle in weighted first-order Sobolev spaces on the real axis”, Math. Notes, 105:1 (2019), 91–103 | DOI | DOI | MR | Zbl
[54] E. P. Ushakova, “Boundedness criteria for the Hardy–Steklov operator expressed in terms of a fairway function”, Dokl. Math., 91:2 (2015), 197–198 | DOI | DOI | MR | Zbl
[55] E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator”, Eurasian Math. J., 8:2 (2017), 74–96 | MR