@article{RM_2019_74_6_a1,
author = {V. I. Danilov and A. V. Karzanov and G. A. Koshevoy},
title = {Cubillages of cyclic zonotopes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1013--1074},
year = {2019},
volume = {74},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/}
}
V. I. Danilov; A. V. Karzanov; G. A. Koshevoy. Cubillages of cyclic zonotopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1013-1074. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/
[1] G. D. Bailey, Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Thesis (Ph.D.), Minnesota Univ., 1997, 108 pp. | MR
[2] A. Bj{ö}rner, M. {Las Vergnas}, B. Sturmfels, N. White, G. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, 2nd ed., Cambridge Univ. Press, 1999, xii+548 pp. | DOI | MR | Zbl
[3] N. Bourbaki, Éléments de mathématique. Topologie algébrique. Ch. 1 à 4, Springer, Heidelberg, 2016, xv+498 pp. | DOI | MR | Zbl
[4] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Separated set-systems and their geometric models”, Russian Math. Surveys, 65:4 (2010), 659–740 | DOI | DOI | MR | Zbl
[5] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Combined tilings and separated set-systems”, Selecta Math. (N. S.), 23:2 (2017), 1175–1203 | DOI | MR | Zbl
[6] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, On interrelations between strongly, weakly and chord separated set-systems (a geometric approach), 2018, 30 pp., arXiv: 1805.09595
[7] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, The weak separation in higher dimensions, 2019, 28 pp., arXiv: 1904.09798
[8] V. I. Danilov, G. A. Koshevoy, “Arrays and the combinatorics of Young tableaux”, Russian Math. Surveys, 60:2 (2005), 269–334 | DOI | DOI | MR | Zbl
[9] A. Dimakis, F. Müller-Hoissen, “KP solitons, higher Bruhat and Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 391–423 | DOI | MR | Zbl
[10] P. H. Edelman, V. Reiner, “Free arrangements and rhombic tilings”, Discrete Comput. Geom, 15:3 (1996), 307–340 | DOI | MR | Zbl
[11] S. Felsner, H. Weil, “A theorem on higher Bruhat orders”, Discrete Comput. Geom., 23:1 (2000), 121–127 | DOI | MR | Zbl
[12] S. Felsner, G. M. Ziegler, “Zonotopes associated with higher Bruhat orders”, Discrete Math., 241:1-3 (2001), 301–312 | DOI | MR | Zbl
[13] P. Galashin, “Plabic graphs and zonotopal tilings”, Proc. Lond. Math. Soc. (3), 117:4 (2018), 661–681 | DOI | MR | Zbl
[14] P. Galashin, A. Postnikov, Purity and separation for oriented matroids, 2017, 84 pp., arXiv: 1708.01329
[15] I. M. Gel'fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl
[16] M. M. Kapranov, V. A. Voevodsky, “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[17] M. M. Kapranov, V. A. Voevodsky, “Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results)”, International category theory meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Géom. Différentielle Catég., 32:1 (1991), 11–27 | MR | Zbl
[18] R. Karpman, Y. Kodama, Triangulations and soliton graphs for totally positive Grassmannian, 2018, 40 pp., arXiv: 1808.01587
[19] M. Las Vergnas, “Extensions ponctuelles compatibles d'une géométrie combinatoire”, C. R. Acad. Sci. Paris, Sér. A-B, 286:21 (1978), A981–A984 | MR | Zbl
[20] B. Leclerc, A. Zelevinsky, “Quasicommuting families of quantum Pl{ü}cker coordinates”, Kirillov's seminar on representation theory, Amer. Math. Soc. Trans. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 85–108 | DOI | MR | Zbl
[21] J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp. | DOI | MR | Zbl
[22] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | DOI | MR | Zbl
[23] Yu. I. Manin, V. V. Shekhtman, “Higher Bruhat orders, related to the symmetric group”, Funct. Anal. Appl., 20:2 (1986), 148–150 | DOI | MR | Zbl
[24] Yu. I. Manin, V. V. Schechtman, “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic number theory – in honour of K. Iwasawa, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 289–308 | DOI | MR | Zbl
[25] F. Müller-Hoissen, J. M. Pallo, J. Stasheff (eds.), Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, xx+433 pp. | DOI | MR | Zbl
[26] S. Oppermann, H. Thomas, “Higher-dimensional cluster combinatorics and representation theory”, J. Eur. Math. Soc. (JEMS), 14:6 (2012), 1679–1737 ; (2011 (v1 – 2010)), 41 pp., arXiv: 1001.5437 | DOI | MR | Zbl
[27] J. Rambau, “Triangulations of cyclic polytopes and higher Bruhat orders”, Mathematika, 44:1 (1997), 162–194 | DOI | MR | Zbl
[28] J. Rambau, V. Reiner, “A survey of the higher Stasheff–Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 351–390 | DOI | MR | Zbl
[29] G. C. Shephard, “Combinatorial properties of associated zonotopes”, Canadian J. Math., 26:2 (1974), 302–321 | DOI | MR | Zbl
[30] R. P. Stanley, Enumerative combinatorics, v. 1, Wadsworth Brooks/Cole Math. Ser., 1, Wadsworth Brooks/Cole Advanced Books Software, Monterey, CA, 1986, xiv+306 pp. | DOI | MR | MR | Zbl | Zbl
[31] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl
[32] H. Thomas, Maps between higher Bruhat orders and higher Stasheff–Tamari posets, Proceedings of the 15-th international conference on formal power series and algebraic combinatorics (Link{ö}ping, 2003), 2005, 12 pp., \par http://igm.univ-mlv.fr/~fpsac/FPSAC03/articles.html
[33] V. A. Voevodskii, M. M. Kapranov, “Free $n$-category generated by a cube, oriented matroids, and higher Bruhat orders”, Funct. Anal. Appl., 25:1 (1991), 50–52 | DOI | MR | Zbl
[34] G. M. Ziegler, “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32:2 (1993), 259–279 | DOI | MR | Zbl
[35] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl