Cubillages of cyclic zonotopes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1013-1074
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of recent results on fine zonotopal tilings by cubes (briefly, cubillages) of cyclic zonotopes. The main interest of this theory is that it is interrelated with the theory of higher Bruhat orders, as well as with the parallel theory of triangulations of cyclic polytopes and Tamari–Stasheff posets, used in investigations of the Kadomtsev–Petviashvili equations and higher Auslander–Reiten algebras.
Keywords: higher Bruhat orders, Tamari–Stasheff poset, polycategory, rhombus tiling, separated sets, purity.
@article{RM_2019_74_6_a1,
     author = {V. I. Danilov and A. V. Karzanov and G. A. Koshevoy},
     title = {Cubillages of cyclic zonotopes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1013--1074},
     year = {2019},
     volume = {74},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - A. V. Karzanov
AU  - G. A. Koshevoy
TI  - Cubillages of cyclic zonotopes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 1013
EP  - 1074
VL  - 74
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/
LA  - en
ID  - RM_2019_74_6_a1
ER  - 
%0 Journal Article
%A V. I. Danilov
%A A. V. Karzanov
%A G. A. Koshevoy
%T Cubillages of cyclic zonotopes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 1013-1074
%V 74
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/
%G en
%F RM_2019_74_6_a1
V. I. Danilov; A. V. Karzanov; G. A. Koshevoy. Cubillages of cyclic zonotopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 1013-1074. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a1/

[1] G. D. Bailey, Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Thesis (Ph.D.), Minnesota Univ., 1997, 108 pp. | MR

[2] A. Bj{ö}rner, M. {Las Vergnas}, B. Sturmfels, N. White, G. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, 2nd ed., Cambridge Univ. Press, 1999, xii+548 pp. | DOI | MR | Zbl

[3] N. Bourbaki, Éléments de mathématique. Topologie algébrique. Ch. 1 à 4, Springer, Heidelberg, 2016, xv+498 pp. | DOI | MR | Zbl

[4] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Separated set-systems and their geometric models”, Russian Math. Surveys, 65:4 (2010), 659–740 | DOI | DOI | MR | Zbl

[5] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Combined tilings and separated set-systems”, Selecta Math. (N. S.), 23:2 (2017), 1175–1203 | DOI | MR | Zbl

[6] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, On interrelations between strongly, weakly and chord separated set-systems (a geometric approach), 2018, 30 pp., arXiv: 1805.09595

[7] V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, The weak separation in higher dimensions, 2019, 28 pp., arXiv: 1904.09798

[8] V. I. Danilov, G. A. Koshevoy, “Arrays and the combinatorics of Young tableaux”, Russian Math. Surveys, 60:2 (2005), 269–334 | DOI | DOI | MR | Zbl

[9] A. Dimakis, F. Müller-Hoissen, “KP solitons, higher Bruhat and Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 391–423 | DOI | MR | Zbl

[10] P. H. Edelman, V. Reiner, “Free arrangements and rhombic tilings”, Discrete Comput. Geom, 15:3 (1996), 307–340 | DOI | MR | Zbl

[11] S. Felsner, H. Weil, “A theorem on higher Bruhat orders”, Discrete Comput. Geom., 23:1 (2000), 121–127 | DOI | MR | Zbl

[12] S. Felsner, G. M. Ziegler, “Zonotopes associated with higher Bruhat orders”, Discrete Math., 241:1-3 (2001), 301–312 | DOI | MR | Zbl

[13] P. Galashin, “Plabic graphs and zonotopal tilings”, Proc. Lond. Math. Soc. (3), 117:4 (2018), 661–681 | DOI | MR | Zbl

[14] P. Galashin, A. Postnikov, Purity and separation for oriented matroids, 2017, 84 pp., arXiv: 1708.01329

[15] I. M. Gel'fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl

[16] M. M. Kapranov, V. A. Voevodsky, “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259 | DOI | MR | Zbl

[17] M. M. Kapranov, V. A. Voevodsky, “Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results)”, International category theory meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Géom. Différentielle Catég., 32:1 (1991), 11–27 | MR | Zbl

[18] R. Karpman, Y. Kodama, Triangulations and soliton graphs for totally positive Grassmannian, 2018, 40 pp., arXiv: 1808.01587

[19] M. Las Vergnas, “Extensions ponctuelles compatibles d'une géométrie combinatoire”, C. R. Acad. Sci. Paris, Sér. A-B, 286:21 (1978), A981–A984 | MR | Zbl

[20] B. Leclerc, A. Zelevinsky, “Quasicommuting families of quantum Pl{ü}cker coordinates”, Kirillov's seminar on representation theory, Amer. Math. Soc. Trans. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 85–108 | DOI | MR | Zbl

[21] J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp. | DOI | MR | Zbl

[22] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | DOI | MR | Zbl

[23] Yu. I. Manin, V. V. Shekhtman, “Higher Bruhat orders, related to the symmetric group”, Funct. Anal. Appl., 20:2 (1986), 148–150 | DOI | MR | Zbl

[24] Yu. I. Manin, V. V. Schechtman, “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic number theory – in honour of K. Iwasawa, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 289–308 | DOI | MR | Zbl

[25] F. Müller-Hoissen, J. M. Pallo, J. Stasheff (eds.), Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, xx+433 pp. | DOI | MR | Zbl

[26] S. Oppermann, H. Thomas, “Higher-dimensional cluster combinatorics and representation theory”, J. Eur. Math. Soc. (JEMS), 14:6 (2012), 1679–1737 ; (2011 (v1 – 2010)), 41 pp., arXiv: 1001.5437 | DOI | MR | Zbl

[27] J. Rambau, “Triangulations of cyclic polytopes and higher Bruhat orders”, Mathematika, 44:1 (1997), 162–194 | DOI | MR | Zbl

[28] J. Rambau, V. Reiner, “A survey of the higher Stasheff–Tamari orders”, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 351–390 | DOI | MR | Zbl

[29] G. C. Shephard, “Combinatorial properties of associated zonotopes”, Canadian J. Math., 26:2 (1974), 302–321 | DOI | MR | Zbl

[30] R. P. Stanley, Enumerative combinatorics, v. 1, Wadsworth Brooks/Cole Math. Ser., 1, Wadsworth Brooks/Cole Advanced Books Software, Monterey, CA, 1986, xiv+306 pp. | DOI | MR | MR | Zbl | Zbl

[31] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl

[32] H. Thomas, Maps between higher Bruhat orders and higher Stasheff–Tamari posets, Proceedings of the 15-th international conference on formal power series and algebraic combinatorics (Link{ö}ping, 2003), 2005, 12 pp., \par http://igm.univ-mlv.fr/~fpsac/FPSAC03/articles.html

[33] V. A. Voevodskii, M. M. Kapranov, “Free $n$-category generated by a cube, oriented matroids, and higher Bruhat orders”, Funct. Anal. Appl., 25:1 (1991), 50–52 | DOI | MR | Zbl

[34] G. M. Ziegler, “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32:2 (1993), 259–279 | DOI | MR | Zbl

[35] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl