Mots-clés : adjoint variables
@article{RM_2019_74_6_a0,
author = {S. M. Aseev and V. M. Veliov},
title = {Another view of the maximum principle for infinite-horizon optimal control problems in economics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {963--1011},
year = {2019},
volume = {74},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/}
}
TY - JOUR AU - S. M. Aseev AU - V. M. Veliov TI - Another view of the maximum principle for infinite-horizon optimal control problems in economics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 963 EP - 1011 VL - 74 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/ LA - en ID - RM_2019_74_6_a0 ER -
%0 Journal Article %A S. M. Aseev %A V. M. Veliov %T Another view of the maximum principle for infinite-horizon optimal control problems in economics %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 963-1011 %V 74 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/ %G en %F RM_2019_74_6_a0
S. M. Aseev; V. M. Veliov. Another view of the maximum principle for infinite-horizon optimal control problems in economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 963-1011. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/
[1] D. Acemoglu, Introduction to modern economic growth, Princeton Univ. Press, Princeton, NJ, 2009, xviii+990 pp. | Zbl
[2] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl
[3] K. J. Arrow, M. Kurz, Public investment, the rate of return, and optimal fiscal policy, J. Hopkins Univ. Press, Baltimore, MD, 1970, 218 pp.
[4] S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 11–21 | DOI | MR | Zbl
[5] S. M. Aseev, “Adjoint variables and intertemporal prices in infinite-horizon optimal control problems”, Proc. Steklov Inst. Math., 290:1 (2015), 223–237 | DOI | DOI | MR | Zbl
[6] S. M. Aseev, K. O. Besov, S. Yu. Kaniovski, “Optimal policies in the Dasgupta–Heal–Solow–Stiglitz model under nonconstant returns to scale”, Proc. Steklov Inst. Math., 304 (2019), 74–109 | DOI | DOI | MR | Zbl
[7] S. M. Aseev, K. O. Besov, A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 67:2 (2012), 195–253 | DOI | DOI | MR | Zbl
[8] S. M. Aseev, M. I. Krastanov, V. M. Veliov, “Optimality conditions for discrete-time optimal control on infinite horizon”, Pure Appl. Funct. Anal., 2:3 (2017), 395–409 | MR | Zbl
[9] S. M. Aseev, A. V. Kryazhimskiĭ, “The Pontryagin maximum principle for an optimal control problem with a functional specified by an improper integral”, Dokl. Math., 69:1 (2004), 89–91 | MR | Zbl
[10] S. M. Aseev, A. V. Kryazhimskiy, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119 | DOI | MR | Zbl
[11] S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR | Zbl
[12] S. M. Aseev, A. V. Kryazhimskii, “On a class of optimal control problems arising in mathematical economics”, Proc. Steklov Inst. Math., 262 (2008), 10–25 | DOI | MR | Zbl
[13] S. M. Aseev, A. V. Kryazhimskii, A. M. Tarasyev, “The Pontryagin maximum principle and transversality conditions for an optimal control problem with infinite time interval”, Proc. Steklov Inst. Math., 233 (2001), 64–80 | MR | Zbl
[14] S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19:1-2 (2012), 43–63 | MR | Zbl
[15] S. M. Aseev, V. M. Veliov, “Needle variations in infinite-horizon optimal control”, Variational and optimal control problems on unbounded domains, Contemp. Math., 619, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2014, 1–17 | DOI | MR | Zbl
[16] S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Tr. IMM UrO RAN, 20, no. 3, 2014, 41–57 ; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 22–39 | MR | Zbl | DOI
[17] J. P. Aubin, F. H. Clarke, “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17:5 (1979), 567–586 | DOI | MR | Zbl
[18] E. J. Balder, “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl
[19] R. J. Barro, X. Sala-i-Martin, Economic growth, McGraw Hill, New York, 1995, xviii+539 pp.
[20] R. Bellman, Dynamic programming, Princeton Univ. Press, Princeton, NJ, 1957, xxv+342 pp. | MR | MR | Zbl
[21] H. Benchekroun, C. Withagen, “The optimal depletion of exhaustible resources: a complete characterization”, Resource and Energy Economics, 33:3 (2011), 612–636 | DOI
[22] L. M. Benveniste, J. A. Scheinkman, “Duality theory for dynamic optimization models of economics: the continuous time case”, J. Econom. Theory, 27:1 (1982), 1–19 | DOI | MR | Zbl
[23] K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Proc. Steklov Inst. Math., 284 (2014), 50–80 | DOI | DOI | MR | Zbl
[24] Yu. I. Brodskii, “Necessary conditions for a weak extremum in optimal control problems on an infinite time interval”, Math. USSR-Sb., 34:3 (1978), 327–343 | DOI | MR | Zbl
[25] P. Cannarsa, H. Frankowska, “Value function, relaxation, and transversality conditions in infinite horizon optimal control”, J. Math. Anal. Appl., 457:2 (2018), 1188–1217 | DOI | MR | Zbl
[26] D. A. Carlson, A. B. Haurie, A. Leizarowitz, Infinite horizon optimal control. Deterministic and stochastic systems, 2nd rev. and enl. ed., Springer-Verlag, Berlin, 1991, xvi+332 pp. | DOI | MR | Zbl
[27] D. Cass, “Optimum growth in an aggregative model of capital accumulation”, Rev. Econom. Stud., 32:3 (1965), 233–240 | DOI
[28] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Ergeb. Math. Grenzgeb. (N. F.), 16, Springer-Verlag, Berlin–Göttingen– Heidelberg, 1959, vii+271 pp. | DOI | MR | Zbl
[29] A. C. Chiang, Elements of dynamic optimization, MacGraw-Hill, Singapore, 1992, xiii+327 pp.
[30] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl
[31] F. Clarke, Functional analysis, calculus of variations and optimal control, Grad. Texts in Math., 264, Springer, London, 2013, xiv+591 pp. | DOI | MR | Zbl
[32] P. Dasgupta, G. Heal, “The optimal depletion of exhaustible resources”, Rev. Econom. Stud., 41:5 (1974), 3–28 | DOI | Zbl
[33] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl
[34] R. Dorfman, “An economic interpretation of optimal control theory”, Amer. Econom. Rev., 59:5 (1969), 817–831
[35] I. Ekeland, “Some variational problems arising from mathematical economics”, Mathematical economics (Montecatini Terme, 1986), Lecture Notes in Math., 1330, Springer, Berlin, 1988, 1–18 | DOI | MR | Zbl
[36] A. F. Filippov, Differential equations with discontinuous righthand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988, x+304 pp. | DOI | MR | MR | Zbl | Zbl
[37] H. Halkin, “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42:2 (1974), 267–272 | DOI | MR | Zbl
[38] P. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[39] H. Hotelling, “The economics of exhaustible resources”, J. Polit. Econom., 39:2 (1931), 137–175 | DOI | Zbl
[40] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp. | MR | Zbl
[41] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publ. Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl
[42] T. Kamihigashi, “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69:4 (2001), 995–1012 | DOI | MR | Zbl
[43] T. C. Koopmans, “On the concept of optimal economic growth”, The econometric approach to development planning, North Holland Publ. Co., Amsterdam; Rand McNally, Chicago, 1965
[44] P. Michel, “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975–985 | DOI | MR | Zbl
[45] S. Pickenhain, “Hilbert space treatment of optimal control problems with infinite horizon”, Modeling, simulation and optimization of complex processes – 2012, Springer, Cham, 2014, 169–182 | DOI
[46] S. Pickenhain, “Infinite horizon optimal control problems in the light of convex analysis in Hilbert spaces”, Set-Valued Var. Anal., 23:1 (2015), 169–189 | DOI | MR | Zbl
[47] L. S. Pontryagin, “Nekotorye matematicheskie zadachi, voznikayuschie v svyazi s teoriei optimalnykh sistem avtomaticheskogo regulirovaniya”, Sessiya AN SSSR po nauchnym problemam avtomatizatsii proizvodstva (15–20.X 1956 g.), v. 2, Osnovnye problemy avtomaticheskogo regulirovaniya i upravleniya, Izd-vo AN SSSR, M., 1957, 107–117
[48] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[49] F. P. Ramsey, “A mathematical theory of saving”, Econom. J., 38:152 (1928), 543–559 | DOI
[50] N. Sagara, “Value functions and transversality conditions for infinite-horizon optimal control problems”, Set-Valued Var. Anal., 18:1 (2010), 1–28 | DOI | MR | Zbl
[51] A. Seierstad, “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl
[52] A. Seierstad, “A maximum principle for smooth infinite horizon optimal control problems with state constraints and with terminal constraints at infinity”, Open J. Optim., 4:3 (2015), 100–130 | DOI
[53] A. Seierstad, K. Sydsæ{ter}, “Sufficient conditions in optimal control theory”, Internat. Econom. Rev., 18:2 (1977), 367–391 | DOI | MR | Zbl
[54] A. Seierstad, K. Sydsæ{ter}, Optimal control theory with economic applications, Adv. Textbooks Econom., North-Holland Publ. Co., Amsterdam, 1987, xvi+445 pp. | MR | Zbl
[55] A. Seierstad, K. Sydsæ{ter}, “Conditions implying the vanishing of the Hamiltonian at infinity in optimal control problems”, Optim. Lett., 3:4 (2009), 507–512 | DOI | MR | Zbl
[56] K. Shell, “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics (Varenna, 1967), Lect. Notes Oper. Res. Math. Econom., I, Springer, Berlin, 1969, 241–292 | MR | Zbl
[57] B. Skritek, V. M. Veliov, “On the infinite-horizon optimal control of age-structured systems”, J. Optim. Theory Appl., 167:1 (2015), 243–271 | DOI | MR | Zbl
[58] G. V. Smirnov, “Transversality condition for infinite-horizon problems”, J. Optim. Theory Appl., 88:3 (1996), 671–688 | DOI | MR | Zbl
[59] R. M. Solow, “Intergenerational equity and exhaustible resources”, Rev. Econom. Stud., 41:5 (1974), 29–45 | DOI | Zbl
[60] J. Stiglitz, “Growth with exhaustible natural resources: efficient and optimal growth paths”, Rev. Econom. Stud., 41:5 (1974), 123–137 | DOI | Zbl
[61] N. Tauchnitz, “The Pontryagin maximum principle for nonlinear optimal control problems with infinite horizon”, J. Optim. Theory Appl., 167:1 (2015), 27–48 | DOI | MR | Zbl
[62] J. J. Ye, “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl