Another view of the maximum principle for infinite-horizon optimal control problems in economics
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 963-1011
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The authors present their recently developed complete version of the Pontryagin maximum principle for a class of infinite-horizon optimal control problems arising in economics. The main distinguishing feature of the result is that the adjoint variable is explicitly specified by a formula analogous to the Cauchy formula for solutions of linear differential systems. In certain situations this formula implies the ‘standard’ transversality conditions at infinity. Moreover, it can serve as an alternative to them. Examples demonstrate the advantages of the proposed version of the maximum principle. In particular, its applications are considered to Halkin's example, to Ramsey's optimal economic growth model, and to a basic model for optimal extraction of a non-renewable resource. Also presented is an economic interpretation of the characterization obtained for the adjoint variable.
Bibliography: 62 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal control, Pontryagin maximum principle, transversality conditions, Ramsey model, optimal extraction of
a non-renewable resource.
Mots-clés : adjoint variables
                    
                  
                
                
                Mots-clés : adjoint variables
@article{RM_2019_74_6_a0,
     author = {S. M. Aseev and V. M. Veliov},
     title = {Another view of the maximum principle for infinite-horizon optimal control problems in economics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {963--1011},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/}
}
                      
                      
                    TY - JOUR AU - S. M. Aseev AU - V. M. Veliov TI - Another view of the maximum principle for infinite-horizon optimal control problems in economics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 963 EP - 1011 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/ LA - en ID - RM_2019_74_6_a0 ER -
%0 Journal Article %A S. M. Aseev %A V. M. Veliov %T Another view of the maximum principle for infinite-horizon optimal control problems in economics %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 963-1011 %V 74 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/ %G en %F RM_2019_74_6_a0
S. M. Aseev; V. M. Veliov. Another view of the maximum principle for infinite-horizon optimal control problems in economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 6, pp. 963-1011. http://geodesic.mathdoc.fr/item/RM_2019_74_6_a0/
