Linear systems with quadratic integral and complete integrability of the Schrödinger equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 959-961
@article{RM_2019_74_5_a9,
author = {V. V. Kozlov},
title = {Linear systems with quadratic integral and complete integrability of the {Schr\"odinger} equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {959--961},
year = {2019},
volume = {74},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_5_a9/}
}
TY - JOUR AU - V. V. Kozlov TI - Linear systems with quadratic integral and complete integrability of the Schrödinger equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 959 EP - 961 VL - 74 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_5_a9/ LA - en ID - RM_2019_74_5_a9 ER -
V. V. Kozlov. Linear systems with quadratic integral and complete integrability of the Schrödinger equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 959-961. http://geodesic.mathdoc.fr/item/RM_2019_74_5_a9/
[1] V. V. Kozlov, PMM, 56:6 (1992), 900–906 | DOI | MR | Zbl
[2] V. V. Kozlov, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl
[3] D. V. Treschev, A. A. Shkalikov, Matem. zametki, 101:6 (2017), 911–918 | DOI | DOI | MR | Zbl
[4] L. D. Faddeev, Amer. Math. Soc. Transl. Ser. 2, 220, 2007, 83–90 | DOI | MR | Zbl
[5] D. V. Treschev, Tr. MIAN, 250, 2005, 226–261 | MR | Zbl
[6] W. Miller, Jr., S. Post, P. Winternitz, Classical and quantum superintegrability with applications, 2013, 124 pp., arXiv: 1309.2694v1
[7] V. V. Kozlov, D. V. Treschev, TMF, 140:3 (2004), 460–479 | DOI | DOI | MR | Zbl
[8] V. V. Kozlov, Dokl. RAN, 401:5 (2005), 603–606 | MR | Zbl