Dirichlet problem for the Yang–Mills equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 947-949
@article{RM_2019_74_5_a5,
author = {A. G. Sergeev and A. B. Sukhov},
title = {Dirichlet problem for the {Yang{\textendash}Mills} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {947--949},
year = {2019},
volume = {74},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_5_a5/}
}
A. G. Sergeev; A. B. Sukhov. Dirichlet problem for the Yang–Mills equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 947-949. http://geodesic.mathdoc.fr/item/RM_2019_74_5_a5/
[1] E. M. Chirka, “Introduction to the geometry of $CR$-manifolds”, Russian Math. Surveys, 46:1 (1991), 95–197 | DOI | MR | Zbl
[2] S. K. Donaldson, “Boundary value problems for Yang–Mills fields”, J. Geom. Phys., 8:1-4 (1992), 89–122 | DOI | MR | Zbl
[3] B. Drinovec-Drnovšek, F. Forstnerič, “Approximation of holomorphic mappings on strongly pseudoconvex domains”, Forum Math., 20:5 (2008), 817–840 | DOI | MR | Zbl
[4] A. Sebbar, “Principe d'Oka–Grauert dans $A^\infty$”, Math. Z., 201:4 (1989), 561–581 | DOI | MR | Zbl