Chebyshev centres, Jung constants, and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 775-849
Voir la notice de l'article provenant de la source Math-Net.Ru
The approximation of concrete function classes is the most common subject in the theory of approximations of functions. An important particular case of this is the problem of the Chebyshev centre and radius. As it turns out, this problem is not only a special case of the Kolmogorov width problem, but it is also related in a mysterious way to other important characteristics and results in the theory of functions and other more general branches of analysis and geometry. The aim of the present study is to give a survey of the current state of this problem and to discuss its possible applications.
Bibliography: 169 titles.
Keywords:
Chebyshev centre, Chebyshev-centre map, Chebyshev net, Chebyshev point, fixed point theorem
Mots-clés : Jung constant, normal structure coefficient.
Mots-clés : Jung constant, normal structure coefficient.
@article{RM_2019_74_5_a0,
author = {A. R. Alimov and I. G. Tsar'kov},
title = {Chebyshev centres, {Jung} constants, and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {775--849},
publisher = {mathdoc},
volume = {74},
number = {5},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/}
}
TY - JOUR AU - A. R. Alimov AU - I. G. Tsar'kov TI - Chebyshev centres, Jung constants, and their applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 775 EP - 849 VL - 74 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/ LA - en ID - RM_2019_74_5_a0 ER -
A. R. Alimov; I. G. Tsar'kov. Chebyshev centres, Jung constants, and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 775-849. http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/