Chebyshev centres, Jung constants, and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 775-849
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approximation of concrete function classes is the most common subject in the theory of approximations of functions. An important particular case of this is the problem of the Chebyshev centre and radius. As it turns out, this problem is not only a special case of the Kolmogorov width problem, but it is also related in a mysterious way to other important characteristics and results in the theory of functions and other more general branches of analysis and geometry. The aim of the present study is to give a survey of the current state of this problem and to discuss its possible applications. Bibliography: 169 titles.
Keywords: Chebyshev centre, Chebyshev-centre map, Chebyshev net, Chebyshev point, fixed point theorem
Mots-clés : Jung constant, normal structure coefficient.
@article{RM_2019_74_5_a0,
     author = {A. R. Alimov and I. G. Tsar'kov},
     title = {Chebyshev centres, {Jung} constants, and their applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {775--849},
     year = {2019},
     volume = {74},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - I. G. Tsar'kov
TI  - Chebyshev centres, Jung constants, and their applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 775
EP  - 849
VL  - 74
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/
LA  - en
ID  - RM_2019_74_5_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%A I. G. Tsar'kov
%T Chebyshev centres, Jung constants, and their applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 775-849
%V 74
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/
%G en
%F RM_2019_74_5_a0
A. R. Alimov; I. G. Tsar'kov. Chebyshev centres, Jung constants, and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 775-849. http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/

[1] P. V. Albrekht, Ob operatorakh pochti nailuchshego priblizheniya, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1994, 200 pp.

[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[3] E. Alvoni, P. L. Papini, “Perturbation of sets and centers”, J. Global Optim., 33:3 (2005), 423–434 | DOI | MR | Zbl

[4] D. Amir, “Chebyshev centers and uniform convexity”, Pacific J. Math., 77:1 (1978), 1–6 | DOI | MR | Zbl

[5] D. Amir, “Uniqueness of best simultaneous approximation and strictly interpolating subspaces”, J. Approx. Theory, 40:3 (1984), 196–201 | DOI | MR | Zbl

[6] D. Amir, “On Jung's constant and related constants in normed linear spaces”, Pacific J. Math., 118:1 (1985), 1–15 | DOI | MR | Zbl

[7] D. Amir, “Best simultaneous approximation (Chebyshev centers)”, Parametric optimization and approximation (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., 72, Birkhäuser, Basel, 1985, 19–35 | DOI | MR | Zbl

[8] D. Amir, J. Mach, “Chebyshev centers in normed spaces”, J. Approx. Theory, 40:4 (1984), 364–374 | DOI | MR | Zbl

[9] D. Amir, J. Mach, K. Saatkamp, “Existence of Chebyshev centers, best $n$-nets and best compact approximants”, Trans. Amer. Math. Soc., 271:2 (1982), 513–524 | DOI | MR | Zbl

[10] D. Amir, Z. Ziegler, “Relative Chebyshev centers in normed linear spaces. I”, J. Approx. Theory, 29:3 (1980), 235–252 | DOI | MR | Zbl

[11] D. Amir, Z. Ziegler, “Relative Chebyshev centers in normed linear spaces. II”, J. Approx. Theory, 38:4 (1983), 293–311 | DOI | MR | Zbl

[12] J. Appell, C. Franchetti, E. M. Semenov, “Estimates for the Jung constant in Banach lattices”, Israel J. Math., 116 (2000), 171–187 | DOI | MR | Zbl

[13] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl

[14] D. A. Ault, F. R. Deutsch, P. D. Morris, J. E. Olson, “Interpolating subspaces in approximation theory”, J. Approx. Theory, 3:2 (1970), 164–182 | DOI | MR | Zbl

[15] J. M. Ayerbe Toledano, T. Domínguez Benavides, G. López Acedo, Measures of noncompactness in metric fixed point theory, Oper. Theory Adv. Appl., 99, Birkhäuser Verlag, Basel, 1997, viii+211 pp. | DOI | MR | Zbl

[16] A. G. Babenko, S. V. Konyagin, I. G. Tsarkov, “O priblizhennom reshenii uravneniya $f(x)=x$”, Differentsialnye uravneniya, garmonicheskii analiz i ikh prilozheniya, Sbornik trudov konferentsii molodykh uchenykh MGU, Izd-vo Mosk. un-ta, M., 1987, 59–62

[17] V. S. Balaganskii, “Some remarks on relative Chebyshev centers”, J. Approx. Theory, 89:3 (1997), 372–379 | DOI | MR | Zbl

[18] M. V. Balashov, D. Repovš, “On the splitting problem for selections”, J. Math. Anal. Appl., 355:1 (2009), 277–287 | DOI | MR | Zbl

[19] K. Ball, “Inequalities and sphere-packing in $\ell_p$”, Israel J. Math., 58:2 (1987), 243–256 | DOI | MR | Zbl

[20] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl

[21] M. Baronti, P. L. Papini, “Nearby sets and centers”, Approximation and optimization (Havana, 1987), Lecture Notes in Math., 1354, Springer, Berlin, 98–105 | DOI | MR | Zbl

[22] M. Bartelt, “On Lipschitz conditions, strong unicity and a theorem of A. K. Cline”, J. Approx. Theory, 14:4 (1975), 245–250 | DOI | MR | Zbl

[23] M. A. Baseri, H. Mazaheri, “Remotest points and approximate remotest points in metric spaces”, Iran. J. Sci. Technol. Trans. A Sci., 42:1 (2018), 21–24 | DOI | MR | Zbl

[24] A. Beck, Y. C. Eldar, “Regularization in regression with bounded noise: a Chebyshev center approach”, SIAM J. Matrix Anal. Appl., 29:2 (2007), 606–625 | DOI | MR | Zbl

[25] B. B. Bednov, P. A. Borodin, K. V. Chesnokova, “Existence of Lipschitz selections of the Steiner map”, Sb. Math., 209:2 (2018), 145–162 | DOI | DOI | MR | Zbl

[26] G. Beer, D. Pai, “On convergence of convex sets and relative Chebyshev centers”, J. Approx. Theory, 62:2 (1990), 147–169 | DOI | MR | Zbl

[27] P. K. Belobrov, “O chebyshevskom tsentre mnozhestva v banakhovom prostranstve”, Izv. vuzov. Matem., 1964, no. 2, 25–30 | MR | Zbl

[28] P. K. Belobrov, “O chebyshevskoi tochke sistemy mnozhestv”, Izv. vuzov. Matem., 1966, no. 6, 18–24 | MR | Zbl

[29] P. K. Belobrov, “Ob ustoichivosti chebyshevskogo tsentra mnozhestva”, Uchen. zap. Kazan. un-ta, 127, no. 1, Izd-vo Kazan. un-ta, Kazan, 1967, 10–16 | MR | Zbl

[30] P. K. Belobrov, “Ob odnoi zadache chebyshevskogo priblizheniya”, Izv. vuzov. Matem., 1967, no. 2, 3–8 | MR | Zbl

[31] P. K. Belobrov, “The Chebyshev point of a system of translations of subspaces of a Banach space”, Math. Notes, 8:1 (1970), 485–491 | DOI | MR | Zbl

[32] T. I. Belykh, V. P. Bulatov, È. N. Yas'kova, “Methods of Chebyshev points of convex sets and their applications”, Comput. Math. Math. Phys., 48:1 (2008), 16–29 | DOI | MR | Zbl

[33] V. I. Berdyshev, “Jackson's theorem in $L_p$”, Proc. Steklov Inst. Math., 88 (1967), 1–14 | MR | Zbl

[34] V. I. Berdyshev, “A relation between Jensen's inequality and a geometrical problem”, Math. Notes, 3:3 (1968), 206–213 | DOI | MR | Zbl

[35] V. I. Berdyshev, “Metric projection onto finite-dimensional subspaces of $C$ and $L$”, Math. Notes, 18:4 (1975), 871–879 | DOI | MR | Zbl

[36] S. V. Berdyshev, “Otnositelnaya konstanta Yunga prostranstva $l^n_{\infty}$”, Tr. IMM UrO RAN, 5, 1998, 97–103 | Zbl

[37] F. Bohnenblust, “Convex regions and projections in Minkowski spaces”, Ann. of Math. (2), 39:2 (1938), 301–308 | DOI | MR | Zbl

[38] P. A. Borodin, “An example of nonexistence of a Steiner point in a Banach space”, Math. Notes, 87:4 (2010), 485–488 | DOI | DOI | MR | Zbl

[39] J. Borwein, L. Keener, “The Hausdorff metric and Čebyšev centers”, J. Approx. Theory, 28:4 (1980), 366–376 | DOI | MR | Zbl

[40] A. P. Bosznay, “A remark on simultaneous approximation”, J. Approx. Theory, 23:3 (1978), 296–298 | DOI | MR | Zbl

[41] N. D. Botkin, V. L. Turova-Botkina, “An algorithm for finding the Chebyshev center of a convex polyhedron”, Appl. Math. Optim., 29:2 (1994), 211–222 | DOI | MR | Zbl

[42] V. P. Bulatov, Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 158 pp. | MR

[43] I. V. Bychkov, A. L. Kazakov, A. A. Lempert, D. S. Bukharov, A. B. Stolbov, “The intelligent management system of development of regional transport-logistic infrastructure”, Autom. Remote Control, 77:2 (2016), 332–343 | DOI | MR | Zbl

[44] J. R. Calder, W. P. Coleman, R. L. Harris, “Centers of infinite bounded sets in a normed space”, Canad. J. Math., 25:5, 986–999 | DOI | MR | Zbl

[45] M. Casini, A. Garulli, A. Vicino, “Efficient computation of $\ell_1$ uncertainty model from an impulse response set”, Automatica, 44:10 (2008), 2570–2576 | DOI | MR | Zbl

[46] G. Z. Chelidze, “On critical values of numerical parameters characterizing intersections of embedded sets”, Math. Notes, 68:2 (2000), 263–269 | DOI | DOI | MR | Zbl

[47] G. Z. Chelidze, P. L. Papini, “Some remarks on the intersection of embedded sets”, Math. Notes, 80:3 (2006), 428–434 | DOI | DOI | MR | Zbl

[48] W. Cheney, W. Light, A course in approximation theory, Brooks/Cole Ser. Adv. Math., Brooks/Cole Pub. Co., Pacific Grove, CA, 2000, xiv+359 pp. | MR | Zbl

[49] A. O. Chiacchio, J. B. Prolla, M. S. M. Roversi, “Best approximants for bounded functions and the lattice operations”, Rev. Mat. Univ. Complut. Madrid, 5:1 (1992), 39–54 | MR | Zbl

[50] L. Ćirić, “A fixed point theorem in reflexive Banach spaces”, Publ. Inst. Math. (Beograd) (N. S.), 36(50) (1984), 105–106 | MR | Zbl

[51] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp. | DOI | MR | Zbl

[52] R. Craigen, H. Kharaghani, “Hadamard matrices and Hadamard designs”, Handbook of combinatorial designs, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2007, 273–279

[53] J. Daneš, “On the radius of a set in a Hilbert space”, Comment. Math. Univ. Carolin., 25:2 (1984), 355–362 | MR | Zbl

[54] W. J. Davis, “A characterization of $P_1$-spaces”, J. Approx. Theory, 21:4 (1977), 315–318 | DOI | MR | Zbl

[55] M. M. Day, R. C. James, S. Swaminathan, “Normed linear spaces that are uniformly convex in every direction”, Canad. J. Math., 23:6 (1971), 1051–1059 | DOI | MR | Zbl

[56] R. DeVore, S. Foucart, G. Petrova, P. Wojtaszczyk, “Computing a quantity of interest from observational data”, Constr. Approx., 49:3 (2019), 461–508 | DOI | MR | Zbl

[57] V. L. Dol'nikov, “Jung constant in $l_1^n$”, Math. Notes, 42:4 (1987), 787–791 | DOI | MR | Zbl

[58] Z. Drezner, “The weighted minimax location problem with set-up costs and extensions”, RAIRO Rech. Opér., 25:1 (1991), 55–64 | DOI | MR | Zbl

[59] Yu. Yu. Druzhinin, “Existence of a Lipschitz selection of the Chebyshev-centre map”, Sb. Math., 204:5 (2013), 641–660 | DOI | DOI | MR | Zbl

[60] Yu. Yu. Druzhinin, “On selections from the best $n$-nets”, Math. Notes, 104:5 (2018), 678–682 | DOI | DOI | MR | Zbl

[61] J. Eisenfeld, V. Lakshmikantham, “On a measure of nonconvexity and applications”, Yokohama Math. J., 24:1-2 (1976), 133–140 | MR | Zbl

[62] D. J. Elzinga, D. W. Hearn, “The minimum covering sphere problem”, Management Sci., 19 (1972), 96–104 | DOI | MR | Zbl

[63] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, xiv+820 pp. | DOI | MR | Zbl

[64] M. Finzel, “Linear-approximation in $\ell^\infty_n$”, J. Approx. Theory, 76:3 (1994), 326–350 | DOI | MR | Zbl

[65] M. Finzel, W. Li, “Piecewise affine selections for piecewise polyhedral multifunctions and metric projections”, J. Convex Anal., 7:1 (2000), 73–94 | MR | Zbl

[66] C. Franchetti, E. W. Cheney, “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl

[67] E. L. Fuster, “Some moduli and constants related to metric fixed point theory”, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, 133–175 | DOI | MR | Zbl

[68] S. García-Ferreira, Y. F. Ortiz-Castillo, T. Yamauchi, “Insertion theorems for maps to linearly ordered topological spaces”, Topology Appl., 188 (2015), 74–81 | DOI | MR | Zbl

[69] A. L. Garkavi, “O chebyshevskom tsentre mnozhestva v normirovannom prostranstve”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 328–331 | MR | Zbl

[70] A. L. Garkavi, “The best possible net and the best possible cross-section of a set in a normed space”, Amer. Math. Soc. Transl. Ser. II, 39, Amer. Math. Soc., Providence, RI, 1964, 111–132 | DOI | MR | Zbl

[71] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6(120) (1964), 139–145 | MR | Zbl

[72] A. L. Garkavi, “Approksimativnye tsentry i seti mnozhestva v lineinom normirovannom prostranstve”, Teoriya priblizheniya funktsii (Kaluga, 1975), Nauka, M., 1977, 107–112 | MR | Zbl

[73] A. L. Garkavi, V. A. Shmatkov, “On the Lamé point and its generalizations in a normed space”, Math. USSR-Sb., 24:2 (1974), 267–286 | DOI | MR | Zbl

[74] B. Gärtner, “Fast and robust smallest enclosing balls”, Algorithms–ESA' 99, Proceedings of the 7th annual European symposium (Prague, 1999), Lecture Notes in Comput. Sci., 1643, Springer-Verlag, Berlin, 1999, 325–338 | DOI | MR

[75] K. A. Geniatulin, V. I. Nosov, “Primenenie metoda koordinatsionnykh kolets pri chastotno-territorialnom planirovanii sistemy sputnikovoi svyazi s zonalnym obsluzhivaniem”, Vestn. SibGUTI, 2014, no. 1, 35–48

[76] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Stud. Adv. Math., 28, Cambridge Univ. Press, Cambridge, 1990, viii+244 pp. | DOI | MR | Zbl

[77] A. Granas, J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+690 pp. | DOI | MR | Zbl

[78] N. M. Gulevich, “The measure of nonconvexity and the Jung constant”, J. Math. Sci., 81:2 (1996), 2562–2566 | DOI | MR | Zbl

[79] Kh. G. Guseinov, A. N. Moiseev, V. N. Ushakov, “The approximation of reachable domains of control systems”, J. Appl. Math. Mech., 62:2 (1998), 169–175 | DOI | MR | Zbl

[80] R. B. Holmes, A course on optimization and best approximation, Lecture Notes in Math., 257, Springer-Verlag, Berlin–New York, 1972, viii+233 pp. | DOI | MR | Zbl

[81] K. J. Horadam, Hadamard matrices and their applications, Princeton Univ. Press, Princeton, NJ, 2007, xiv+263 pp. | MR | Zbl

[82] R. Huotari, M. P. Prophet, “On a constrained optimal location algorithm”, J. Comput. Anal. Appl., 5:1 (2003), 119–127 | DOI | MR | Zbl

[83] V. I. Ivanov, “On the relation between the Jackson and Jung constants of the spaces $L_ p$”, Math. Notes, 58:6 (1995), 1269–1275 | DOI | MR | Zbl

[84] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii. Teoriya i prilozheniya, Fizmatlit, M., 2006, 352 pp. | Zbl

[85] G. E. Ivanov, M. V. Balashov, “Lipschitz continuous parametrizations of set-valued maps with weakly convex images”, Izv. Math., 71:6 (2007), 1123–1143 | DOI | DOI | MR | Zbl

[86] V. I. Ivanov, S. A. Pichugov, “Jung constants of the $l_p^n$-spaces”, Math. Notes, 48:4 (1990), 997–1004 | DOI | MR | Zbl

[87] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L^p$, Izd-vo TulGU, Tula, 2010, 174 pp.

[88] V. V. Ivanov, L. F. Shapovalova, “Optimal algorithms for the numerical solution of integral equations”, Ukrainian Math. J., 35:5 (1983), 480–485 | DOI | MR | Zbl

[89] J. Jachymski, “A Cantor type intersection theorem for superreflexive Banach spaces and fixed points of almost affine mappings”, J. Nonlinear Convex Anal., 16:6 (2015), 1055–1068 | MR | Zbl

[90] H. Jung, “Ueber die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 1901:123 (1901), 241–257 | DOI | MR | Zbl

[91] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR | Zbl

[92] N. J. Kalton, “Extending Lipschitz maps into $C(K)$-spaces”, Israel J. Math., 162 (2007), 275–315 | DOI | MR | Zbl

[93] A. L. Kazakov, P. D. Lebedev, “Algorithms for constructing optimal $n$-networks in metric spaces”, Autom. Remote Control, 78:7 (2017), 1290–1301 | DOI | MR | Zbl

[94] A. L. Kazakov, A. A. Lempert, “An approach to optimization in transport logistics”, Autom. Remote Control, 72:7 (2011), 1398–1404 | DOI | MR | Zbl

[95] A. L. Kazakov, A. A. Lempert, D. S. Bukharov, “On segmenting logistical zones for servicing continuously developed consumers”, Autom. Remote Control, 74:6 (2013), 968–977 | DOI | MR | Zbl

[96] L. L. Keener, “Best possible nets in a normed linear space”, Canad. Math. Bull., 18:1 (1975), 45–48 | DOI | MR | Zbl

[97] S. Ya. Khavinson, “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29:2 (2003), 87–105 | DOI | MR

[98] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances”, Amer. Math. Monthly, 72:9 (1965), 1004–1006 | DOI | MR | Zbl

[99] V. Klee, “Circumspheres and inner products”, Math. Scand., 8 (1960), 363–370 | DOI | MR | Zbl

[100] A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. of Math. (2), 37:1 (1936), 107–110 | DOI | MR | Zbl

[101] S. V. Konyagin, “A remark on the renormings of nonreflexive spaces and the existence of the Chebyshev center”, Moscow Univ. Math. Bull., 43:2 (1988), 55–56 | MR | Zbl

[102] B. I. Kurilin, “Solution of the Chebyshev approximation problem for an incompatible system of nonlinear equations”, U.S.S.R. Comput. Math. Math. Phys., 10:1 (1970), 1–16 | DOI | MR | Zbl

[103] S. Lalithambigai, T. Paul, P. Shunmugaraj, V. Thota, “Chebyshev centers and some geometric properties of Banach spaces”, J. Math. Anal. Appl., 449:1 (2017), 926–938 | DOI | MR | Zbl

[104] J. M. Lambert, P. D. Milman, “Restricted Chebyshev centers of bounded subsets in arbitrary Banach spaces”, J. Approx. Theory, 26:1 (1979), 71–78 | DOI | MR | Zbl

[105] P.-J. Laurent, D. Pai, “On simultaneous approximation”, Numer. Funct. Anal. Optim., 19:9-10 (1998), 1045–1064 | DOI | MR | Zbl

[106] P. J. Laurent, Pham-Dinh-Tuan, “Global approximation of a compact set by elements of a convex set in a normed space”, Numer. Math., 15:2 (1970), 137–150 | DOI | MR | Zbl

[107] P. D. Lebedev, D. S. Bukharov, “Approksimatsiya mnogougolnikov nailuchshimi naborami krugov”, Izv. Irkut. gos. un-ta. Ser. matem., 6:3 (2013), 72–87 | Zbl

[108] P. D. Lebedev, A. V. Ushakov, “Approximating sets on a plane with optimal sets of circles”, Autom. Remote Control, 73:3 (2012), 485–493 | DOI | MR | Zbl

[109] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Algoritmy nailuchshei approksimatsii ploskikh mnozhestv ob'edineniyami krugov”, Vestn. Udmurt. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 88–99 | Zbl

[110] K. Leichtweiß, Konvexe Mengen, Hochschultext, Springer-Verlag, Berlin–New York, 1980, 330 pp. | MR | MR | Zbl | Zbl

[111] C. Li, G. Lopez, “On generic well-posedness of restricted Chebyshev center problems in Banach spaces”, Acta Math. Sin. (Engl. Ser.), 22:3 (2006), 741–750 | DOI | MR | Zbl

[112] C. Li, G. A. Watson, “A class of best simultaneous approximation problems”, Comput. Math. Appl., 31:10 (1996), 45–53 | DOI | MR | Zbl

[113] T.-C. Lim, “On the normal structure coefficient and the bounded sequence coefficient”, Proc. Amer. Math. Soc., 88:2 (1983), 262–264 | DOI | MR | Zbl

[114] J. Mach, “On the existence of best simultaneous approximation”, J. Approx. Theory, 25:3 (1979), 258–265 | DOI | MR | Zbl

[115] J. Mach, “Continuity properties of Chebyshev centers”, J. Approx. Theory, 29:3 (1980), 223–230 | DOI | MR | Zbl

[116] E. V. Manokhin, “Nekotorye mnozhestva $l_1^n$ i konstanta Yunga”, Chebyshevskii sb., 9:1 (2008), 144–147 | MR | Zbl

[117] E. V. Manokhin, Konstanty Yunga proizvedenii nekotorykh banakhovykh prostranstv, Nauchnye issledovaniya i ikh prakticheskoe primenenie. Sovremennoe sostoyanie i puti razvitiya. SWorld, 2012, 17 pp., \par https://www.sworld.com.ua/konfer28/151.pdf

[118] I. Marrero, “A note on reflexivity and nonconvexity”, Nonlinear Anal., 74:18 (2011), 6890–6894 | DOI | MR | Zbl

[119] I. Marrero, “Weak compactness and the Eisenfeld–Lakshmikantham measure of nonconvexity”, Fixed Point Theory Appl., 2012 (2012), 5, 7 pp. | DOI | MR | Zbl

[120] M. Matolcsi, “A Walsh–Fourier approach to the circulant Hadamard conjecture”, Algebraic design theory and Hadamard matrices, Springer Proc. Math. Stat., 133, Springer, Cham, 2015, 201–208 | DOI | MR | Zbl

[121] W. B. Moors, “Nearly Chebyshev sets are almost convex”, Set-Valued Var. Anal., 26:1 (2018), 67–76 | DOI | MR | Zbl

[122] V. Nguyen-Khac, K. Nguyen-Van, “An infinite-dimensional generalization of the Jung theorem”, Math. Notes, 80:2 (2006), 224–232 | DOI | DOI | MR | Zbl

[123] D. V. Pai, P. T. Nowroji, “On restricted centers of sets”, J. Approx. Theory, 66:2 (1991), 170–189 | DOI | MR | Zbl

[124] P. L. Papini, “Two new examples of sets without medians and centers”, TOP, 13:2 (2005), 315–320 | DOI | MR | Zbl

[125] L. Peng, C. Li, “Uniqueness of simultaneous approximations in continuous function spaces”, Appl. Math. Lett., 21:4 (2008), 383–387 | DOI | MR | Zbl

[126] R. R. Phelps, “Čhebyšev subspaces of finite dimension in $L_1$”, Proc. Amer. Math. Soc., 17:3 (1966), 646–652 | MR | Zbl

[127] S. A. Pichugov, “Jung's constant for the space $L_p$”, Math. Notes, 43:5 (1988), 348–354 | DOI | MR | Zbl

[128] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl

[129] F. P. Preparata, M. I. Shamos, Computational geometry. An Introduction, Texts Monogr. Comput. Sci., Springer-Verlag, New York, 1985, xii+390 pp. | DOI | MR | MR | Zbl | Zbl

[130] J. B. Prolla, A. O. Chiacchio, M. S. M. Roversi, “Chebyshev centers in spaces of continuous functions”, Arch. Math. (Basel), 50:4 (1988), 371–379 | DOI | MR | Zbl

[131] L. Pronzato, “Minimax and maximin space-filling designs: some properties and methods for construction”, J. SFdS, 158:1 (2017), 7–36 | MR | Zbl

[132] B. Prus, R. Smarzewski, “Strongly unique best approximations and centers in uniformly convex spaces”, J. Math. Anal. Appl., 121:1 (1987), 10–21 | DOI | MR | Zbl

[133] T. S. S. R. K. Rao, “Simultaneously proximinal subspaces”, J. Appl. Anal., 22:2 (2016), 115–120 | DOI | MR | Zbl

[134] Z. D. Ren, “Lower bounds for Jung constants of Orlicz sequence spaces”, Ann. Polon. Math., 97:1 (2010), 23–34 | DOI | MR | Zbl

[135] N. A. Routledge, “A result in Hilbert space”, Quart. J. Math., Oxford Ser. (2), 3 (1952), 12–18 | DOI | MR | Zbl

[136] M. S. M. Roversi, “Best approximation of bounded functions by continuous functions”, J. Approx. Theory, 41:2 (1984), 135–148 | DOI | MR | Zbl

[137] E. R. Rozema, P. W. Smith, “Global approximation with bounded coefficients”, J. Approx. Theory, 16:2 (1976), 162–174 | DOI | MR | Zbl

[138] M. Sababheh, A. Yousef, R. Khalil, “Uniquely remotal sets in Banach spaces”, Filomat, 31:9 (2017), 2773–2777 | DOI | MR

[139] D. Sain, V. Kadets, K. Paul, A. Ray, “Chebyshev centers that are not farthest points”, Indian J. Pure Appl. Math., 49:2 (2018), 189–204 | DOI | MR

[140] K. Sekitani, Y. Yamamoto, “A recursive algorithm for finding the minimum covering sphere of a polytope and the minimum covering concentric spheres of several polytopes”, Japan J. Indust. Appl. Math., 10:2 (1993), 255–273 | DOI | MR | Zbl

[141] E. M. Semenov, K. Franketti, “Geometric properties, related to the Jung constant, of rearrangement-invariant spaces”, St. Petersburg Math. J., 10:5 (1999), 861–878 | MR | Zbl

[142] P. W. Smith, J. D. Ward, “Restricted centers in $C(\Omega)$”, Proc. Amer. Math. Soc., 48 (1975), 165–172 | DOI | MR | Zbl

[143] P. Szeptycki, F. S. Van Vleck, “Centers and nearest points of sets”, Proc. Amer. Math. Soc., 85:1 (1982), 27–31 | DOI | MR | Zbl

[144] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monograph Series, Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | MR | Zbl | Zbl

[145] I. G. Tsar'kov, “Smoothing of uniformly continuous mappings in $L_p$ spaces”, Math. Notes, 54:3 (1993), 957–967 | DOI | MR | Zbl

[146] I. G. Tsarkov, “On smooth selections from sets of almost Chebyshev centers”, Moscow Univ. Math. Bull., 51:2 (1996), 56–57 | MR | Zbl

[147] I. G. Tsarkov, “Ustoichivost otnositelnogo chebyshëvskogo proektora v poliedralnykh prostranstvakh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 235–245 | DOI | MR

[148] M. V. Ukhanov, V. I. Shiryaev, “Algoritmy postroeniya informatsionnykh mnozhestv dlya realizatsii minimaksnogo filtra”, Vestn. Yuzhno-Ur. gos. un-ta. Ser. Matem. Mekh. Fiz., 2:3 (2002), 19–33

[149] V. N. Ushakov, A. S. Lakhtin, P. D. Lebedev, “Optimization of the Hausdorff distance between sets in Euclidean space”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 222–238 | DOI | MR | Zbl

[150] V. N. Ushakov, P. D. Lebedev, “Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 225–237 | DOI | MR | Zbl

[151] V. N. Ushakov, P. D. Lebedev, N. G. Lavrov, “Algoritmy postroeniya optimalnykh upakovok v ellipsy”, Vestn. Yuzhno-Ur. gos. un-ta. Ser. Matem. modelirovanie i programmirovanie, 10:3 (2017), 67–79 | DOI | Zbl

[152] A. A. Vasil'eva, “Closed spans in vector-valued function spaces and their approximative properties”, Izv. Math., 68:4 (2004), 709–747 | DOI | DOI | MR | Zbl

[153] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl

[154] L. Veselý, “Generalized centers of finite sets in Banach spaces”, Acta Math. Univ. Comenian. (N. S.), 66:1 (1997), 83–115 | MR | Zbl

[155] L. Veselý, “A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers”, Arch. Math. (Basel), 79:6 (2002), 499–506 | DOI | MR | Zbl

[156] L. Veselý, “Chebyshev centers in hyperplanes of $c_0$”, Czechoslovak Math. J., 52:4 (2002), 721–729 | DOI | MR | Zbl

[157] L. Veselý, “Quasi uniform convexity – revisited”, J. Approx. Theory, 223 (2017), 64–76 | DOI | MR | Zbl

[158] J. P. Wang, X. T. Yu, “Chebyshev centers, $\varepsilon$-Chebyshev centers and the Hausdorff metric”, Manuscripta Math., 63:1 (1989), 115–128 | DOI | MR | Zbl

[159] J. D. Ward, Existence and uniqueness of Chebyshev centers in certain Banach spaces, Ph.D. thesis, Purdue Univ., 1973, 62 pp. | MR

[160] J. D. Ward, “Chebyshev centers in spaces of continuous functions”, Pacific J. Math., 52 (1974), 283–287 | DOI | MR | Zbl

[161] E. Welzl, “Smallest enclosing disks (balls and ellipsoids)”, New results and new trends in computer science (Graz, 1991), Lecture Notes in Comput. Sci., 555, Springer, Berlin, 1991, 359–370 | DOI | MR

[162] V. A. Yudin, “Distribution of the points of a design on the sphere”, Izv. Math., 69:5 (2005), 1061–1079 | DOI | DOI | MR | Zbl

[163] J.-Z. Xiao, X.-H. Zhu, “The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity”, Math. Comput. Modelling, 54:5-6 (2011), 1576–1583 | DOI | MR | Zbl

[164] S. Xu, R. M. Freund, J. Sun, “Solution methodologies for the smallest enclosing circle problem”, Comput. Optim. Appl., 25:1-3 (2003), 283–292 | DOI | MR | Zbl

[165] E. A. Yildirim, “Two algorithms for the minimum enclosing ball problem”, SIAM J. Optim., 19:3 (2008), 1368–1391 | DOI | MR | Zbl

[166] V. N. Zamyatin, “Chebyshevskii tsentr v giperploskostyakh prostranstva nepreryvnykh funktsii”, Funktsionalnyi analiz, Mezhvuz. sb., v. 10, Ulyanov. gos. ped. in-t, Ulyanovsk, 1979, 56–68 | MR | Zbl

[167] V. N. Zamyatin, A. B. Shishkin, “Chebyshev centers and $\varkappa$-normal spaces”, Math. Notes, 29:5 (1981), 336–342 | DOI | MR | Zbl

[168] I. A. Zikratova, F. N. Shago, A. V. Gurtov, I. I. Ivaninskaya, “Optimizatsiya zony pokrytiya seti sotovoi svyazi na osnove matematicheskogo programmirovaniya”, Nauch.-tekh. vestn. inform. tekhnologii, mekhaniki i optiki, 15:2 (2015), 313–321

[169] S. I. Zukhovitskij, L. I. Avdeyeva, Linear and convex programming, W. B. Saunders Co., Philadelphia, PA–London, 1966, viii+286 pp. | MR | MR | Zbl | Zbl