Mots-clés : Jung constant, normal structure coefficient.
@article{RM_2019_74_5_a0,
author = {A. R. Alimov and I. G. Tsar'kov},
title = {Chebyshev centres, {Jung} constants, and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {775--849},
year = {2019},
volume = {74},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/}
}
A. R. Alimov; I. G. Tsar'kov. Chebyshev centres, Jung constants, and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 5, pp. 775-849. http://geodesic.mathdoc.fr/item/RM_2019_74_5_a0/
[1] P. V. Albrekht, Ob operatorakh pochti nailuchshego priblizheniya, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1994, 200 pp.
[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[3] E. Alvoni, P. L. Papini, “Perturbation of sets and centers”, J. Global Optim., 33:3 (2005), 423–434 | DOI | MR | Zbl
[4] D. Amir, “Chebyshev centers and uniform convexity”, Pacific J. Math., 77:1 (1978), 1–6 | DOI | MR | Zbl
[5] D. Amir, “Uniqueness of best simultaneous approximation and strictly interpolating subspaces”, J. Approx. Theory, 40:3 (1984), 196–201 | DOI | MR | Zbl
[6] D. Amir, “On Jung's constant and related constants in normed linear spaces”, Pacific J. Math., 118:1 (1985), 1–15 | DOI | MR | Zbl
[7] D. Amir, “Best simultaneous approximation (Chebyshev centers)”, Parametric optimization and approximation (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., 72, Birkhäuser, Basel, 1985, 19–35 | DOI | MR | Zbl
[8] D. Amir, J. Mach, “Chebyshev centers in normed spaces”, J. Approx. Theory, 40:4 (1984), 364–374 | DOI | MR | Zbl
[9] D. Amir, J. Mach, K. Saatkamp, “Existence of Chebyshev centers, best $n$-nets and best compact approximants”, Trans. Amer. Math. Soc., 271:2 (1982), 513–524 | DOI | MR | Zbl
[10] D. Amir, Z. Ziegler, “Relative Chebyshev centers in normed linear spaces. I”, J. Approx. Theory, 29:3 (1980), 235–252 | DOI | MR | Zbl
[11] D. Amir, Z. Ziegler, “Relative Chebyshev centers in normed linear spaces. II”, J. Approx. Theory, 38:4 (1983), 293–311 | DOI | MR | Zbl
[12] J. Appell, C. Franchetti, E. M. Semenov, “Estimates for the Jung constant in Banach lattices”, Israel J. Math., 116 (2000), 171–187 | DOI | MR | Zbl
[13] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl
[14] D. A. Ault, F. R. Deutsch, P. D. Morris, J. E. Olson, “Interpolating subspaces in approximation theory”, J. Approx. Theory, 3:2 (1970), 164–182 | DOI | MR | Zbl
[15] J. M. Ayerbe Toledano, T. Domínguez Benavides, G. López Acedo, Measures of noncompactness in metric fixed point theory, Oper. Theory Adv. Appl., 99, Birkhäuser Verlag, Basel, 1997, viii+211 pp. | DOI | MR | Zbl
[16] A. G. Babenko, S. V. Konyagin, I. G. Tsarkov, “O priblizhennom reshenii uravneniya $f(x)=x$”, Differentsialnye uravneniya, garmonicheskii analiz i ikh prilozheniya, Sbornik trudov konferentsii molodykh uchenykh MGU, Izd-vo Mosk. un-ta, M., 1987, 59–62
[17] V. S. Balaganskii, “Some remarks on relative Chebyshev centers”, J. Approx. Theory, 89:3 (1997), 372–379 | DOI | MR | Zbl
[18] M. V. Balashov, D. Repovš, “On the splitting problem for selections”, J. Math. Anal. Appl., 355:1 (2009), 277–287 | DOI | MR | Zbl
[19] K. Ball, “Inequalities and sphere-packing in $\ell_p$”, Israel J. Math., 58:2 (1987), 243–256 | DOI | MR | Zbl
[20] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl
[21] M. Baronti, P. L. Papini, “Nearby sets and centers”, Approximation and optimization (Havana, 1987), Lecture Notes in Math., 1354, Springer, Berlin, 98–105 | DOI | MR | Zbl
[22] M. Bartelt, “On Lipschitz conditions, strong unicity and a theorem of A. K. Cline”, J. Approx. Theory, 14:4 (1975), 245–250 | DOI | MR | Zbl
[23] M. A. Baseri, H. Mazaheri, “Remotest points and approximate remotest points in metric spaces”, Iran. J. Sci. Technol. Trans. A Sci., 42:1 (2018), 21–24 | DOI | MR | Zbl
[24] A. Beck, Y. C. Eldar, “Regularization in regression with bounded noise: a Chebyshev center approach”, SIAM J. Matrix Anal. Appl., 29:2 (2007), 606–625 | DOI | MR | Zbl
[25] B. B. Bednov, P. A. Borodin, K. V. Chesnokova, “Existence of Lipschitz selections of the Steiner map”, Sb. Math., 209:2 (2018), 145–162 | DOI | DOI | MR | Zbl
[26] G. Beer, D. Pai, “On convergence of convex sets and relative Chebyshev centers”, J. Approx. Theory, 62:2 (1990), 147–169 | DOI | MR | Zbl
[27] P. K. Belobrov, “O chebyshevskom tsentre mnozhestva v banakhovom prostranstve”, Izv. vuzov. Matem., 1964, no. 2, 25–30 | MR | Zbl
[28] P. K. Belobrov, “O chebyshevskoi tochke sistemy mnozhestv”, Izv. vuzov. Matem., 1966, no. 6, 18–24 | MR | Zbl
[29] P. K. Belobrov, “Ob ustoichivosti chebyshevskogo tsentra mnozhestva”, Uchen. zap. Kazan. un-ta, 127, no. 1, Izd-vo Kazan. un-ta, Kazan, 1967, 10–16 | MR | Zbl
[30] P. K. Belobrov, “Ob odnoi zadache chebyshevskogo priblizheniya”, Izv. vuzov. Matem., 1967, no. 2, 3–8 | MR | Zbl
[31] P. K. Belobrov, “The Chebyshev point of a system of translations of subspaces of a Banach space”, Math. Notes, 8:1 (1970), 485–491 | DOI | MR | Zbl
[32] T. I. Belykh, V. P. Bulatov, È. N. Yas'kova, “Methods of Chebyshev points of convex sets and their applications”, Comput. Math. Math. Phys., 48:1 (2008), 16–29 | DOI | MR | Zbl
[33] V. I. Berdyshev, “Jackson's theorem in $L_p$”, Proc. Steklov Inst. Math., 88 (1967), 1–14 | MR | Zbl
[34] V. I. Berdyshev, “A relation between Jensen's inequality and a geometrical problem”, Math. Notes, 3:3 (1968), 206–213 | DOI | MR | Zbl
[35] V. I. Berdyshev, “Metric projection onto finite-dimensional subspaces of $C$ and $L$”, Math. Notes, 18:4 (1975), 871–879 | DOI | MR | Zbl
[36] S. V. Berdyshev, “Otnositelnaya konstanta Yunga prostranstva $l^n_{\infty}$”, Tr. IMM UrO RAN, 5, 1998, 97–103 | Zbl
[37] F. Bohnenblust, “Convex regions and projections in Minkowski spaces”, Ann. of Math. (2), 39:2 (1938), 301–308 | DOI | MR | Zbl
[38] P. A. Borodin, “An example of nonexistence of a Steiner point in a Banach space”, Math. Notes, 87:4 (2010), 485–488 | DOI | DOI | MR | Zbl
[39] J. Borwein, L. Keener, “The Hausdorff metric and Čebyšev centers”, J. Approx. Theory, 28:4 (1980), 366–376 | DOI | MR | Zbl
[40] A. P. Bosznay, “A remark on simultaneous approximation”, J. Approx. Theory, 23:3 (1978), 296–298 | DOI | MR | Zbl
[41] N. D. Botkin, V. L. Turova-Botkina, “An algorithm for finding the Chebyshev center of a convex polyhedron”, Appl. Math. Optim., 29:2 (1994), 211–222 | DOI | MR | Zbl
[42] V. P. Bulatov, Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 158 pp. | MR
[43] I. V. Bychkov, A. L. Kazakov, A. A. Lempert, D. S. Bukharov, A. B. Stolbov, “The intelligent management system of development of regional transport-logistic infrastructure”, Autom. Remote Control, 77:2 (2016), 332–343 | DOI | MR | Zbl
[44] J. R. Calder, W. P. Coleman, R. L. Harris, “Centers of infinite bounded sets in a normed space”, Canad. J. Math., 25:5, 986–999 | DOI | MR | Zbl
[45] M. Casini, A. Garulli, A. Vicino, “Efficient computation of $\ell_1$ uncertainty model from an impulse response set”, Automatica, 44:10 (2008), 2570–2576 | DOI | MR | Zbl
[46] G. Z. Chelidze, “On critical values of numerical parameters characterizing intersections of embedded sets”, Math. Notes, 68:2 (2000), 263–269 | DOI | DOI | MR | Zbl
[47] G. Z. Chelidze, P. L. Papini, “Some remarks on the intersection of embedded sets”, Math. Notes, 80:3 (2006), 428–434 | DOI | DOI | MR | Zbl
[48] W. Cheney, W. Light, A course in approximation theory, Brooks/Cole Ser. Adv. Math., Brooks/Cole Pub. Co., Pacific Grove, CA, 2000, xiv+359 pp. | MR | Zbl
[49] A. O. Chiacchio, J. B. Prolla, M. S. M. Roversi, “Best approximants for bounded functions and the lattice operations”, Rev. Mat. Univ. Complut. Madrid, 5:1 (1992), 39–54 | MR | Zbl
[50] L. Ćirić, “A fixed point theorem in reflexive Banach spaces”, Publ. Inst. Math. (Beograd) (N. S.), 36(50) (1984), 105–106 | MR | Zbl
[51] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp. | DOI | MR | Zbl
[52] R. Craigen, H. Kharaghani, “Hadamard matrices and Hadamard designs”, Handbook of combinatorial designs, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2007, 273–279
[53] J. Daneš, “On the radius of a set in a Hilbert space”, Comment. Math. Univ. Carolin., 25:2 (1984), 355–362 | MR | Zbl
[54] W. J. Davis, “A characterization of $P_1$-spaces”, J. Approx. Theory, 21:4 (1977), 315–318 | DOI | MR | Zbl
[55] M. M. Day, R. C. James, S. Swaminathan, “Normed linear spaces that are uniformly convex in every direction”, Canad. J. Math., 23:6 (1971), 1051–1059 | DOI | MR | Zbl
[56] R. DeVore, S. Foucart, G. Petrova, P. Wojtaszczyk, “Computing a quantity of interest from observational data”, Constr. Approx., 49:3 (2019), 461–508 | DOI | MR | Zbl
[57] V. L. Dol'nikov, “Jung constant in $l_1^n$”, Math. Notes, 42:4 (1987), 787–791 | DOI | MR | Zbl
[58] Z. Drezner, “The weighted minimax location problem with set-up costs and extensions”, RAIRO Rech. Opér., 25:1 (1991), 55–64 | DOI | MR | Zbl
[59] Yu. Yu. Druzhinin, “Existence of a Lipschitz selection of the Chebyshev-centre map”, Sb. Math., 204:5 (2013), 641–660 | DOI | DOI | MR | Zbl
[60] Yu. Yu. Druzhinin, “On selections from the best $n$-nets”, Math. Notes, 104:5 (2018), 678–682 | DOI | DOI | MR | Zbl
[61] J. Eisenfeld, V. Lakshmikantham, “On a measure of nonconvexity and applications”, Yokohama Math. J., 24:1-2 (1976), 133–140 | MR | Zbl
[62] D. J. Elzinga, D. W. Hearn, “The minimum covering sphere problem”, Management Sci., 19 (1972), 96–104 | DOI | MR | Zbl
[63] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, xiv+820 pp. | DOI | MR | Zbl
[64] M. Finzel, “Linear-approximation in $\ell^\infty_n$”, J. Approx. Theory, 76:3 (1994), 326–350 | DOI | MR | Zbl
[65] M. Finzel, W. Li, “Piecewise affine selections for piecewise polyhedral multifunctions and metric projections”, J. Convex Anal., 7:1 (2000), 73–94 | MR | Zbl
[66] C. Franchetti, E. W. Cheney, “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl
[67] E. L. Fuster, “Some moduli and constants related to metric fixed point theory”, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, 133–175 | DOI | MR | Zbl
[68] S. García-Ferreira, Y. F. Ortiz-Castillo, T. Yamauchi, “Insertion theorems for maps to linearly ordered topological spaces”, Topology Appl., 188 (2015), 74–81 | DOI | MR | Zbl
[69] A. L. Garkavi, “O chebyshevskom tsentre mnozhestva v normirovannom prostranstve”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 328–331 | MR | Zbl
[70] A. L. Garkavi, “The best possible net and the best possible cross-section of a set in a normed space”, Amer. Math. Soc. Transl. Ser. II, 39, Amer. Math. Soc., Providence, RI, 1964, 111–132 | DOI | MR | Zbl
[71] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6(120) (1964), 139–145 | MR | Zbl
[72] A. L. Garkavi, “Approksimativnye tsentry i seti mnozhestva v lineinom normirovannom prostranstve”, Teoriya priblizheniya funktsii (Kaluga, 1975), Nauka, M., 1977, 107–112 | MR | Zbl
[73] A. L. Garkavi, V. A. Shmatkov, “On the Lamé point and its generalizations in a normed space”, Math. USSR-Sb., 24:2 (1974), 267–286 | DOI | MR | Zbl
[74] B. Gärtner, “Fast and robust smallest enclosing balls”, Algorithms–ESA' 99, Proceedings of the 7th annual European symposium (Prague, 1999), Lecture Notes in Comput. Sci., 1643, Springer-Verlag, Berlin, 1999, 325–338 | DOI | MR
[75] K. A. Geniatulin, V. I. Nosov, “Primenenie metoda koordinatsionnykh kolets pri chastotno-territorialnom planirovanii sistemy sputnikovoi svyazi s zonalnym obsluzhivaniem”, Vestn. SibGUTI, 2014, no. 1, 35–48
[76] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Stud. Adv. Math., 28, Cambridge Univ. Press, Cambridge, 1990, viii+244 pp. | DOI | MR | Zbl
[77] A. Granas, J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+690 pp. | DOI | MR | Zbl
[78] N. M. Gulevich, “The measure of nonconvexity and the Jung constant”, J. Math. Sci., 81:2 (1996), 2562–2566 | DOI | MR | Zbl
[79] Kh. G. Guseinov, A. N. Moiseev, V. N. Ushakov, “The approximation of reachable domains of control systems”, J. Appl. Math. Mech., 62:2 (1998), 169–175 | DOI | MR | Zbl
[80] R. B. Holmes, A course on optimization and best approximation, Lecture Notes in Math., 257, Springer-Verlag, Berlin–New York, 1972, viii+233 pp. | DOI | MR | Zbl
[81] K. J. Horadam, Hadamard matrices and their applications, Princeton Univ. Press, Princeton, NJ, 2007, xiv+263 pp. | MR | Zbl
[82] R. Huotari, M. P. Prophet, “On a constrained optimal location algorithm”, J. Comput. Anal. Appl., 5:1 (2003), 119–127 | DOI | MR | Zbl
[83] V. I. Ivanov, “On the relation between the Jackson and Jung constants of the spaces $L_ p$”, Math. Notes, 58:6 (1995), 1269–1275 | DOI | MR | Zbl
[84] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii. Teoriya i prilozheniya, Fizmatlit, M., 2006, 352 pp. | Zbl
[85] G. E. Ivanov, M. V. Balashov, “Lipschitz continuous parametrizations of set-valued maps with weakly convex images”, Izv. Math., 71:6 (2007), 1123–1143 | DOI | DOI | MR | Zbl
[86] V. I. Ivanov, S. A. Pichugov, “Jung constants of the $l_p^n$-spaces”, Math. Notes, 48:4 (1990), 997–1004 | DOI | MR | Zbl
[87] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L^p$, Izd-vo TulGU, Tula, 2010, 174 pp.
[88] V. V. Ivanov, L. F. Shapovalova, “Optimal algorithms for the numerical solution of integral equations”, Ukrainian Math. J., 35:5 (1983), 480–485 | DOI | MR | Zbl
[89] J. Jachymski, “A Cantor type intersection theorem for superreflexive Banach spaces and fixed points of almost affine mappings”, J. Nonlinear Convex Anal., 16:6 (2015), 1055–1068 | MR | Zbl
[90] H. Jung, “Ueber die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 1901:123 (1901), 241–257 | DOI | MR | Zbl
[91] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR | Zbl
[92] N. J. Kalton, “Extending Lipschitz maps into $C(K)$-spaces”, Israel J. Math., 162 (2007), 275–315 | DOI | MR | Zbl
[93] A. L. Kazakov, P. D. Lebedev, “Algorithms for constructing optimal $n$-networks in metric spaces”, Autom. Remote Control, 78:7 (2017), 1290–1301 | DOI | MR | Zbl
[94] A. L. Kazakov, A. A. Lempert, “An approach to optimization in transport logistics”, Autom. Remote Control, 72:7 (2011), 1398–1404 | DOI | MR | Zbl
[95] A. L. Kazakov, A. A. Lempert, D. S. Bukharov, “On segmenting logistical zones for servicing continuously developed consumers”, Autom. Remote Control, 74:6 (2013), 968–977 | DOI | MR | Zbl
[96] L. L. Keener, “Best possible nets in a normed linear space”, Canad. Math. Bull., 18:1 (1975), 45–48 | DOI | MR | Zbl
[97] S. Ya. Khavinson, “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29:2 (2003), 87–105 | DOI | MR
[98] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances”, Amer. Math. Monthly, 72:9 (1965), 1004–1006 | DOI | MR | Zbl
[99] V. Klee, “Circumspheres and inner products”, Math. Scand., 8 (1960), 363–370 | DOI | MR | Zbl
[100] A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. of Math. (2), 37:1 (1936), 107–110 | DOI | MR | Zbl
[101] S. V. Konyagin, “A remark on the renormings of nonreflexive spaces and the existence of the Chebyshev center”, Moscow Univ. Math. Bull., 43:2 (1988), 55–56 | MR | Zbl
[102] B. I. Kurilin, “Solution of the Chebyshev approximation problem for an incompatible system of nonlinear equations”, U.S.S.R. Comput. Math. Math. Phys., 10:1 (1970), 1–16 | DOI | MR | Zbl
[103] S. Lalithambigai, T. Paul, P. Shunmugaraj, V. Thota, “Chebyshev centers and some geometric properties of Banach spaces”, J. Math. Anal. Appl., 449:1 (2017), 926–938 | DOI | MR | Zbl
[104] J. M. Lambert, P. D. Milman, “Restricted Chebyshev centers of bounded subsets in arbitrary Banach spaces”, J. Approx. Theory, 26:1 (1979), 71–78 | DOI | MR | Zbl
[105] P.-J. Laurent, D. Pai, “On simultaneous approximation”, Numer. Funct. Anal. Optim., 19:9-10 (1998), 1045–1064 | DOI | MR | Zbl
[106] P. J. Laurent, Pham-Dinh-Tuan, “Global approximation of a compact set by elements of a convex set in a normed space”, Numer. Math., 15:2 (1970), 137–150 | DOI | MR | Zbl
[107] P. D. Lebedev, D. S. Bukharov, “Approksimatsiya mnogougolnikov nailuchshimi naborami krugov”, Izv. Irkut. gos. un-ta. Ser. matem., 6:3 (2013), 72–87 | Zbl
[108] P. D. Lebedev, A. V. Ushakov, “Approximating sets on a plane with optimal sets of circles”, Autom. Remote Control, 73:3 (2012), 485–493 | DOI | MR | Zbl
[109] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Algoritmy nailuchshei approksimatsii ploskikh mnozhestv ob'edineniyami krugov”, Vestn. Udmurt. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 88–99 | Zbl
[110] K. Leichtweiß, Konvexe Mengen, Hochschultext, Springer-Verlag, Berlin–New York, 1980, 330 pp. | MR | MR | Zbl | Zbl
[111] C. Li, G. Lopez, “On generic well-posedness of restricted Chebyshev center problems in Banach spaces”, Acta Math. Sin. (Engl. Ser.), 22:3 (2006), 741–750 | DOI | MR | Zbl
[112] C. Li, G. A. Watson, “A class of best simultaneous approximation problems”, Comput. Math. Appl., 31:10 (1996), 45–53 | DOI | MR | Zbl
[113] T.-C. Lim, “On the normal structure coefficient and the bounded sequence coefficient”, Proc. Amer. Math. Soc., 88:2 (1983), 262–264 | DOI | MR | Zbl
[114] J. Mach, “On the existence of best simultaneous approximation”, J. Approx. Theory, 25:3 (1979), 258–265 | DOI | MR | Zbl
[115] J. Mach, “Continuity properties of Chebyshev centers”, J. Approx. Theory, 29:3 (1980), 223–230 | DOI | MR | Zbl
[116] E. V. Manokhin, “Nekotorye mnozhestva $l_1^n$ i konstanta Yunga”, Chebyshevskii sb., 9:1 (2008), 144–147 | MR | Zbl
[117] E. V. Manokhin, Konstanty Yunga proizvedenii nekotorykh banakhovykh prostranstv, Nauchnye issledovaniya i ikh prakticheskoe primenenie. Sovremennoe sostoyanie i puti razvitiya. SWorld, 2012, 17 pp., \par https://www.sworld.com.ua/konfer28/151.pdf
[118] I. Marrero, “A note on reflexivity and nonconvexity”, Nonlinear Anal., 74:18 (2011), 6890–6894 | DOI | MR | Zbl
[119] I. Marrero, “Weak compactness and the Eisenfeld–Lakshmikantham measure of nonconvexity”, Fixed Point Theory Appl., 2012 (2012), 5, 7 pp. | DOI | MR | Zbl
[120] M. Matolcsi, “A Walsh–Fourier approach to the circulant Hadamard conjecture”, Algebraic design theory and Hadamard matrices, Springer Proc. Math. Stat., 133, Springer, Cham, 2015, 201–208 | DOI | MR | Zbl
[121] W. B. Moors, “Nearly Chebyshev sets are almost convex”, Set-Valued Var. Anal., 26:1 (2018), 67–76 | DOI | MR | Zbl
[122] V. Nguyen-Khac, K. Nguyen-Van, “An infinite-dimensional generalization of the Jung theorem”, Math. Notes, 80:2 (2006), 224–232 | DOI | DOI | MR | Zbl
[123] D. V. Pai, P. T. Nowroji, “On restricted centers of sets”, J. Approx. Theory, 66:2 (1991), 170–189 | DOI | MR | Zbl
[124] P. L. Papini, “Two new examples of sets without medians and centers”, TOP, 13:2 (2005), 315–320 | DOI | MR | Zbl
[125] L. Peng, C. Li, “Uniqueness of simultaneous approximations in continuous function spaces”, Appl. Math. Lett., 21:4 (2008), 383–387 | DOI | MR | Zbl
[126] R. R. Phelps, “Čhebyšev subspaces of finite dimension in $L_1$”, Proc. Amer. Math. Soc., 17:3 (1966), 646–652 | MR | Zbl
[127] S. A. Pichugov, “Jung's constant for the space $L_p$”, Math. Notes, 43:5 (1988), 348–354 | DOI | MR | Zbl
[128] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl
[129] F. P. Preparata, M. I. Shamos, Computational geometry. An Introduction, Texts Monogr. Comput. Sci., Springer-Verlag, New York, 1985, xii+390 pp. | DOI | MR | MR | Zbl | Zbl
[130] J. B. Prolla, A. O. Chiacchio, M. S. M. Roversi, “Chebyshev centers in spaces of continuous functions”, Arch. Math. (Basel), 50:4 (1988), 371–379 | DOI | MR | Zbl
[131] L. Pronzato, “Minimax and maximin space-filling designs: some properties and methods for construction”, J. SFdS, 158:1 (2017), 7–36 | MR | Zbl
[132] B. Prus, R. Smarzewski, “Strongly unique best approximations and centers in uniformly convex spaces”, J. Math. Anal. Appl., 121:1 (1987), 10–21 | DOI | MR | Zbl
[133] T. S. S. R. K. Rao, “Simultaneously proximinal subspaces”, J. Appl. Anal., 22:2 (2016), 115–120 | DOI | MR | Zbl
[134] Z. D. Ren, “Lower bounds for Jung constants of Orlicz sequence spaces”, Ann. Polon. Math., 97:1 (2010), 23–34 | DOI | MR | Zbl
[135] N. A. Routledge, “A result in Hilbert space”, Quart. J. Math., Oxford Ser. (2), 3 (1952), 12–18 | DOI | MR | Zbl
[136] M. S. M. Roversi, “Best approximation of bounded functions by continuous functions”, J. Approx. Theory, 41:2 (1984), 135–148 | DOI | MR | Zbl
[137] E. R. Rozema, P. W. Smith, “Global approximation with bounded coefficients”, J. Approx. Theory, 16:2 (1976), 162–174 | DOI | MR | Zbl
[138] M. Sababheh, A. Yousef, R. Khalil, “Uniquely remotal sets in Banach spaces”, Filomat, 31:9 (2017), 2773–2777 | DOI | MR
[139] D. Sain, V. Kadets, K. Paul, A. Ray, “Chebyshev centers that are not farthest points”, Indian J. Pure Appl. Math., 49:2 (2018), 189–204 | DOI | MR
[140] K. Sekitani, Y. Yamamoto, “A recursive algorithm for finding the minimum covering sphere of a polytope and the minimum covering concentric spheres of several polytopes”, Japan J. Indust. Appl. Math., 10:2 (1993), 255–273 | DOI | MR | Zbl
[141] E. M. Semenov, K. Franketti, “Geometric properties, related to the Jung constant, of rearrangement-invariant spaces”, St. Petersburg Math. J., 10:5 (1999), 861–878 | MR | Zbl
[142] P. W. Smith, J. D. Ward, “Restricted centers in $C(\Omega)$”, Proc. Amer. Math. Soc., 48 (1975), 165–172 | DOI | MR | Zbl
[143] P. Szeptycki, F. S. Van Vleck, “Centers and nearest points of sets”, Proc. Amer. Math. Soc., 85:1 (1982), 27–31 | DOI | MR | Zbl
[144] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monograph Series, Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | MR | Zbl | Zbl
[145] I. G. Tsar'kov, “Smoothing of uniformly continuous mappings in $L_p$ spaces”, Math. Notes, 54:3 (1993), 957–967 | DOI | MR | Zbl
[146] I. G. Tsarkov, “On smooth selections from sets of almost Chebyshev centers”, Moscow Univ. Math. Bull., 51:2 (1996), 56–57 | MR | Zbl
[147] I. G. Tsarkov, “Ustoichivost otnositelnogo chebyshëvskogo proektora v poliedralnykh prostranstvakh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 235–245 | DOI | MR
[148] M. V. Ukhanov, V. I. Shiryaev, “Algoritmy postroeniya informatsionnykh mnozhestv dlya realizatsii minimaksnogo filtra”, Vestn. Yuzhno-Ur. gos. un-ta. Ser. Matem. Mekh. Fiz., 2:3 (2002), 19–33
[149] V. N. Ushakov, A. S. Lakhtin, P. D. Lebedev, “Optimization of the Hausdorff distance between sets in Euclidean space”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 222–238 | DOI | MR | Zbl
[150] V. N. Ushakov, P. D. Lebedev, “Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 225–237 | DOI | MR | Zbl
[151] V. N. Ushakov, P. D. Lebedev, N. G. Lavrov, “Algoritmy postroeniya optimalnykh upakovok v ellipsy”, Vestn. Yuzhno-Ur. gos. un-ta. Ser. Matem. modelirovanie i programmirovanie, 10:3 (2017), 67–79 | DOI | Zbl
[152] A. A. Vasil'eva, “Closed spans in vector-valued function spaces and their approximative properties”, Izv. Math., 68:4 (2004), 709–747 | DOI | DOI | MR | Zbl
[153] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl
[154] L. Veselý, “Generalized centers of finite sets in Banach spaces”, Acta Math. Univ. Comenian. (N. S.), 66:1 (1997), 83–115 | MR | Zbl
[155] L. Veselý, “A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers”, Arch. Math. (Basel), 79:6 (2002), 499–506 | DOI | MR | Zbl
[156] L. Veselý, “Chebyshev centers in hyperplanes of $c_0$”, Czechoslovak Math. J., 52:4 (2002), 721–729 | DOI | MR | Zbl
[157] L. Veselý, “Quasi uniform convexity – revisited”, J. Approx. Theory, 223 (2017), 64–76 | DOI | MR | Zbl
[158] J. P. Wang, X. T. Yu, “Chebyshev centers, $\varepsilon$-Chebyshev centers and the Hausdorff metric”, Manuscripta Math., 63:1 (1989), 115–128 | DOI | MR | Zbl
[159] J. D. Ward, Existence and uniqueness of Chebyshev centers in certain Banach spaces, Ph.D. thesis, Purdue Univ., 1973, 62 pp. | MR
[160] J. D. Ward, “Chebyshev centers in spaces of continuous functions”, Pacific J. Math., 52 (1974), 283–287 | DOI | MR | Zbl
[161] E. Welzl, “Smallest enclosing disks (balls and ellipsoids)”, New results and new trends in computer science (Graz, 1991), Lecture Notes in Comput. Sci., 555, Springer, Berlin, 1991, 359–370 | DOI | MR
[162] V. A. Yudin, “Distribution of the points of a design on the sphere”, Izv. Math., 69:5 (2005), 1061–1079 | DOI | DOI | MR | Zbl
[163] J.-Z. Xiao, X.-H. Zhu, “The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity”, Math. Comput. Modelling, 54:5-6 (2011), 1576–1583 | DOI | MR | Zbl
[164] S. Xu, R. M. Freund, J. Sun, “Solution methodologies for the smallest enclosing circle problem”, Comput. Optim. Appl., 25:1-3 (2003), 283–292 | DOI | MR | Zbl
[165] E. A. Yildirim, “Two algorithms for the minimum enclosing ball problem”, SIAM J. Optim., 19:3 (2008), 1368–1391 | DOI | MR | Zbl
[166] V. N. Zamyatin, “Chebyshevskii tsentr v giperploskostyakh prostranstva nepreryvnykh funktsii”, Funktsionalnyi analiz, Mezhvuz. sb., v. 10, Ulyanov. gos. ped. in-t, Ulyanovsk, 1979, 56–68 | MR | Zbl
[167] V. N. Zamyatin, A. B. Shishkin, “Chebyshev centers and $\varkappa$-normal spaces”, Math. Notes, 29:5 (1981), 336–342 | DOI | MR | Zbl
[168] I. A. Zikratova, F. N. Shago, A. V. Gurtov, I. I. Ivaninskaya, “Optimizatsiya zony pokrytiya seti sotovoi svyazi na osnove matematicheskogo programmirovaniya”, Nauch.-tekh. vestn. inform. tekhnologii, mekhaniki i optiki, 15:2 (2015), 313–321
[169] S. I. Zukhovitskij, L. I. Avdeyeva, Linear and convex programming, W. B. Saunders Co., Philadelphia, PA–London, 1966, viii+286 pp. | MR | MR | Zbl | Zbl