Sobolev-orthogonal systems of functions and some of their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 659-733
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.
Keywords: Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials, the cosines, the Legendre
Mots-clés : Jacobi, Laguerre polynomials.
@article{RM_2019_74_4_a2,
     author = {I. I. Sharapudinov},
     title = {Sobolev-orthogonal systems of functions and some of their applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {659--733},
     year = {2019},
     volume = {74},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev-orthogonal systems of functions and some of their applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 659
EP  - 733
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/
LA  - en
ID  - RM_2019_74_4_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev-orthogonal systems of functions and some of their applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 659-733
%V 74
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/
%G en
%F RM_2019_74_4_a2
I. I. Sharapudinov. Sobolev-orthogonal systems of functions and some of their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 659-733. http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/

[1] G. Faber, “Über die Orthogonalfunctionen des Herrn Haar”, Jahresber. Deutsch Math. Verein., 19 (1910), 104–112 | Zbl

[2] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Z., 26:1 (1927), 47–65 | DOI | MR | Zbl

[3] I. I. Sharapudinov, “Sobolev-orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | DOI | MR | Zbl

[4] I. I. Sharapudinov, M. G. Magomed-Kasumov, “On representation of a solution to the Cauchy problem by a Fourier series in Sobolev-orthogonal polynomials generated by Laguerre polynomials”, Differ. Equ., 54:1 (2018), 49–66 | DOI | DOI | MR | Zbl

[5] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 176–178

[6] P. Althammer, “Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”, J. Reine Angew. Math., 1962:211 (1962), 192–204 | DOI | MR | Zbl

[7] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[8] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[9] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl

[10] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[11] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2:1-4 (1995), 289–303 | MR | Zbl

[12] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[13] F. Marcellán, Y. Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[14] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl

[15] H. Bavinck, “On polynomials orthogonal with respect to an inner product involving differences”, J. Comput. Appl. Math., 57:1-2 (1995), 17–27 | DOI | MR | Zbl

[16] H. Bavinck, “On polynomials orthogonal with respect to an inner product involving differences (the general case)”, Appl. Anal., 59:1-4 (1995), 233–240 | DOI | MR | Zbl

[17] H. Bavinck, R. Koekoek, “Difference operators with Sobolev type Meixner polynomials as eigenfunctions”, Comput. Math. Appl., 36:10-12 (1998), 163–177 | DOI | MR | Zbl

[18] I. Area, E. Godoy, F. Marcellán, “Inner products involving differences: the Meixner–Sobolev polynomials”, J. Differ. Equations Appl., 6:1 (2000), 1–31 | DOI | MR | Zbl

[19] I. I. Sharapudinov, “Approximation properties of the operators $\mathscr Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl

[20] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestan. nauch. tsentra RAN, Makhachkala, 2004, 176 pp.

[21] I. Area, E. Godoy, F. Marcellán, J. J. Moreno-Balcázar, “$\Delta$-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation”, J. Comput. Appl. Math., 178:1-2 (2005), 21–36 | DOI | MR | Zbl

[22] I. I. Sharapudinov, “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3 (2005), 403–423 | DOI | DOI | MR | Zbl

[23] I. I. Sharapudinov, “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Math. Notes, 67:3 (2000), 389–397 | DOI | DOI | MR | Zbl

[24] I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59–70 | DOI | MR | Zbl

[25] I. I. Sharapudinov, Z. D. Gadzhieva, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | DOI | MR | Zbl

[26] I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72 | MR

[27] I. I. Sharapudinov, I. G. Guseinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:2 (2018), 196–205 | DOI | MR

[28] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl

[29] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl

[30] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl

[31] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3 (2008), 417–434 | DOI | DOI | MR | Zbl

[32] I. I. Sharapudinov, G. N. Muratova, “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[33] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl

[34] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | MR | Zbl

[35] I. I. Sharapudinov, “Smeshannye ryady po klassicheskim ortogonalnym polinomam”, Dagestan. elektron. matem. izv., 2015, no. 3, 1–254 | DOI

[36] I. I. Sharapudinov, “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestan. elektron. matem. izv., 2015, no. 4, 31–73 | DOI

[37] I. I. Sharapudinov, “Approximation properties of Fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses”, Math. Notes, 101:4 (2017), 718–734 | DOI | DOI | MR | Zbl

[38] I. I. Sharapudinov, “Special series in Laguerre polynomials and their approximation properties”, Sib. Math. J., 58:2 (2017), 338–362 | DOI | DOI | MR | Zbl

[39] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[40] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[41] I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestan. elektron. matem. izv., 2016, no. 6, 1–24 | DOI

[42] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[43] S. A. Teljakovskiĭ, “Two theorems on the approximation of functions by algebraic polynomials”, Amer. Math. Soc. Transl. Ser. 2, 77, Amer. Math. Soc., Providence, RI, 1968, 163–178 | DOI | MR | Zbl

[44] I. E. Gopengauz, “On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment”, Math. Notes, 1:2 (1967), 110–116 | DOI | MR | Zbl

[45] K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Math. Notes, 18:4 (1975), 895–902 | DOI | MR | Zbl

[46] I. I. Šarapudinov, “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl

[47] I. I. Sharapudinov, “Best approximation and the Fourier–Jacobi sums”, Math. Notes, 34:5 (1983), 816–821 | DOI | MR | Zbl

[48] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, Pergamon Press, New York, 1963, xii+631 pp. | MR | MR | Zbl

[49] G. Gasper, “Positivity and special functions”, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, WI, 1975), Academic Press, New York, 1975, 375–433 | MR | Zbl

[50] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[51] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, 1996, 325 pp. http://people.maths.ox.ac.uk/trefethen/pdetext.html

[52] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl

[53] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl

[54] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87:3 (1965), 698–708 | DOI | MR | Zbl