Mots-clés : Jacobi, Laguerre polynomials.
@article{RM_2019_74_4_a2,
author = {I. I. Sharapudinov},
title = {Sobolev-orthogonal systems of functions and some of their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {659--733},
year = {2019},
volume = {74},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/}
}
I. I. Sharapudinov. Sobolev-orthogonal systems of functions and some of their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 659-733. http://geodesic.mathdoc.fr/item/RM_2019_74_4_a2/
[1] G. Faber, “Über die Orthogonalfunctionen des Herrn Haar”, Jahresber. Deutsch Math. Verein., 19 (1910), 104–112 | Zbl
[2] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Z., 26:1 (1927), 47–65 | DOI | MR | Zbl
[3] I. I. Sharapudinov, “Sobolev-orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | DOI | MR | Zbl
[4] I. I. Sharapudinov, M. G. Magomed-Kasumov, “On representation of a solution to the Cauchy problem by a Fourier series in Sobolev-orthogonal polynomials generated by Laguerre polynomials”, Differ. Equ., 54:1 (2018), 49–66 | DOI | DOI | MR | Zbl
[5] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 176–178
[6] P. Althammer, “Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”, J. Reine Angew. Math., 1962:211 (1962), 192–204 | DOI | MR | Zbl
[7] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl
[8] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl
[9] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl
[10] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl
[11] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2:1-4 (1995), 289–303 | MR | Zbl
[12] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl
[13] F. Marcellán, Y. Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl
[14] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl
[15] H. Bavinck, “On polynomials orthogonal with respect to an inner product involving differences”, J. Comput. Appl. Math., 57:1-2 (1995), 17–27 | DOI | MR | Zbl
[16] H. Bavinck, “On polynomials orthogonal with respect to an inner product involving differences (the general case)”, Appl. Anal., 59:1-4 (1995), 233–240 | DOI | MR | Zbl
[17] H. Bavinck, R. Koekoek, “Difference operators with Sobolev type Meixner polynomials as eigenfunctions”, Comput. Math. Appl., 36:10-12 (1998), 163–177 | DOI | MR | Zbl
[18] I. Area, E. Godoy, F. Marcellán, “Inner products involving differences: the Meixner–Sobolev polynomials”, J. Differ. Equations Appl., 6:1 (2000), 1–31 | DOI | MR | Zbl
[19] I. I. Sharapudinov, “Approximation properties of the operators $\mathscr Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl
[20] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestan. nauch. tsentra RAN, Makhachkala, 2004, 176 pp.
[21] I. Area, E. Godoy, F. Marcellán, J. J. Moreno-Balcázar, “$\Delta$-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation”, J. Comput. Appl. Math., 178:1-2 (2005), 21–36 | DOI | MR | Zbl
[22] I. I. Sharapudinov, “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3 (2005), 403–423 | DOI | DOI | MR | Zbl
[23] I. I. Sharapudinov, “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Math. Notes, 67:3 (2000), 389–397 | DOI | DOI | MR | Zbl
[24] I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59–70 | DOI | MR | Zbl
[25] I. I. Sharapudinov, Z. D. Gadzhieva, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | DOI | MR | Zbl
[26] I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72 | MR
[27] I. I. Sharapudinov, I. G. Guseinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:2 (2018), 196–205 | DOI | MR
[28] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl
[29] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl
[30] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl
[31] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3 (2008), 417–434 | DOI | DOI | MR | Zbl
[32] I. I. Sharapudinov, G. N. Muratova, “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
[33] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl
[34] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | MR | Zbl
[35] I. I. Sharapudinov, “Smeshannye ryady po klassicheskim ortogonalnym polinomam”, Dagestan. elektron. matem. izv., 2015, no. 3, 1–254 | DOI
[36] I. I. Sharapudinov, “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestan. elektron. matem. izv., 2015, no. 4, 31–73 | DOI
[37] I. I. Sharapudinov, “Approximation properties of Fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses”, Math. Notes, 101:4 (2017), 718–734 | DOI | DOI | MR | Zbl
[38] I. I. Sharapudinov, “Special series in Laguerre polynomials and their approximation properties”, Sib. Math. J., 58:2 (2017), 338–362 | DOI | DOI | MR | Zbl
[39] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl
[40] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[41] I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestan. elektron. matem. izv., 2016, no. 6, 1–24 | DOI
[42] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[43] S. A. Teljakovskiĭ, “Two theorems on the approximation of functions by algebraic polynomials”, Amer. Math. Soc. Transl. Ser. 2, 77, Amer. Math. Soc., Providence, RI, 1968, 163–178 | DOI | MR | Zbl
[44] I. E. Gopengauz, “On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment”, Math. Notes, 1:2 (1967), 110–116 | DOI | MR | Zbl
[45] K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Math. Notes, 18:4 (1975), 895–902 | DOI | MR | Zbl
[46] I. I. Šarapudinov, “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl
[47] I. I. Sharapudinov, “Best approximation and the Fourier–Jacobi sums”, Math. Notes, 34:5 (1983), 816–821 | DOI | MR | Zbl
[48] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, Pergamon Press, New York, 1963, xii+631 pp. | MR | MR | Zbl
[49] G. Gasper, “Positivity and special functions”, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, WI, 1975), Academic Press, New York, 1975, 375–433 | MR | Zbl
[50] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl
[51] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, 1996, 325 pp. http://people.maths.ox.ac.uk/trefethen/pdetext.html
[52] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl
[53] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl
[54] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87:3 (1965), 698–708 | DOI | MR | Zbl