Mots-clés : Platonic configurations
@article{RM_2019_74_4_a1,
author = {O. V. Ogievetsky and S. B. Shlosman},
title = {Critical configurations of solid bodies and the {Morse} theory of {MIN} functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {631--657},
year = {2019},
volume = {74},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/}
}
TY - JOUR AU - O. V. Ogievetsky AU - S. B. Shlosman TI - Critical configurations of solid bodies and the Morse theory of MIN functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 631 EP - 657 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/ LA - en ID - RM_2019_74_4_a1 ER -
%0 Journal Article %A O. V. Ogievetsky %A S. B. Shlosman %T Critical configurations of solid bodies and the Morse theory of MIN functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 631-657 %V 74 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/ %G en %F RM_2019_74_4_a1
O. V. Ogievetsky; S. B. Shlosman. Critical configurations of solid bodies and the Morse theory of MIN functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 631-657. http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/
[1] R. Buckminster Fuller, E. J. Applewhite, Synergetics. Explorations in the geometry of thinking, MacMillan Co., New York, 1975, xxxii+876 pp.
[2] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, 3rd ed., Springer-Verlag, New York, 1999, lxxiv+703 pp. ; Dzh. Konvei, N. Sloen, Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990, 792 pp. | DOI | MR | Zbl | MR | MR
[3] H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973, xiv+321 pp. | MR
[4] L. Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Grundlehren Math. Wiss., 65, 2. verb. und erweit. Aufl., Springer-Verlag, Berlin–New York, 1972, xi+238 pp. ; L. Feiesh Tot, Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958, 364 pp. | MR | Zbl
[5] M. Firsching, Optimization methods in discrete geometry, Dissertation, Freie Universität, Freie Univ., Berlin, 2016, 85 pp., \par https://refubium.fu-berlin.de/handle/fub188/7447
[6] A. Heppes, L. Szabó, “On the number of cylinders touching a ball”, Geom. Dedicata, 40:1 (1991), 111–116 | DOI | MR | Zbl
[7] W. Kuperberg, “How many unit cylinders can touch a unit ball? (Problem 3.3)”, DIMACS Workshop on polytopes and convex sets, Rutgers Univ., 1990
[8] R. Kusner, W. Kusner, J. C. Lagarias, S. Shlosman, “Configuration spaces of equal spheres touching a given sphere: the twelve spheres problem”, New trends in intuitive geometry, Bolyai Soc. Math. Stud., 27, János Bolyai Math. Soc., Budapest, 2018, 219–277 ; 2018 (v1 – 2016), 53 pp., arXiv: 1611.10297 | DOI | MR | Zbl
[9] J. C. Lagarias (ed.), The Kepler conjecture. The Hales–Ferguson proof, Springer, New York, 2011, xiv+456 pp. | DOI | MR | Zbl
[10] O. Ogievetsky, S. Shlosman, “The six cylinders problem: $\mathbb D_{3}$-symmetry approach”, Discrete Comput. Geom., publ. online 2019, 1–20 ; 2019 (v1 – 2018), 24 pp., arXiv: 1805.09833 | DOI
[11] O. Ogievetsky, S. Shlosman, Extremal cylinder configurations I: Configuration $C_{\mathfrak{m}}$, 2018, 38 pp., arXiv: 1812.09543
[12] O. Ogievetsky, S. Shlosman, Extremal cylinder configurations II: Configuration $O_{6}$, 2019, 25 pp., arXiv: 1902.08995
[13] O. Ogievetsky, S. Shlosman, Platonic compounds of cylinders, 2019, 35 pp., arXiv: 1904.02043