Critical configurations of solid bodies and the Morse theory of MIN functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 631-657
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the manifold of clusters of non-intersecting congruent solid bodies, all touching the central ball $B\subset\mathbb{R}^{3}$ of radius one. Two main examples are clusters of balls and clusters of infinite cylinders. The notion of critical cluster is introduced, and several critical clusters of balls and of cylinders are studied. In the case of cylinders, some of the critical clusters here are new. The paper also establishes criticality properties of clusters introduced earlier by Kuperberg [7].
Keywords: configurations of balls, configurations of cylinders, rigid clusters, flexible clusters, critical clusters, connected components, Galois symmetries, maxima of non-analytic functions.
Mots-clés : Platonic configurations
@article{RM_2019_74_4_a1,
     author = {O. V. Ogievetsky and S. B. Shlosman},
     title = {Critical configurations of solid bodies and the {Morse} theory of {MIN} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {631--657},
     year = {2019},
     volume = {74},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/}
}
TY  - JOUR
AU  - O. V. Ogievetsky
AU  - S. B. Shlosman
TI  - Critical configurations of solid bodies and the Morse theory of MIN functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 631
EP  - 657
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/
LA  - en
ID  - RM_2019_74_4_a1
ER  - 
%0 Journal Article
%A O. V. Ogievetsky
%A S. B. Shlosman
%T Critical configurations of solid bodies and the Morse theory of MIN functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 631-657
%V 74
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/
%G en
%F RM_2019_74_4_a1
O. V. Ogievetsky; S. B. Shlosman. Critical configurations of solid bodies and the Morse theory of MIN functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 631-657. http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/

[1] R. Buckminster Fuller, E. J. Applewhite, Synergetics. Explorations in the geometry of thinking, MacMillan Co., New York, 1975, xxxii+876 pp.

[2] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, 3rd ed., Springer-Verlag, New York, 1999, lxxiv+703 pp. ; Dzh. Konvei, N. Sloen, Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990, 792 pp. | DOI | MR | Zbl | MR | MR

[3] H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973, xiv+321 pp. | MR

[4] L. Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Grundlehren Math. Wiss., 65, 2. verb. und erweit. Aufl., Springer-Verlag, Berlin–New York, 1972, xi+238 pp. ; L. Feiesh Tot, Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958, 364 pp. | MR | Zbl

[5] M. Firsching, Optimization methods in discrete geometry, Dissertation, Freie Universität, Freie Univ., Berlin, 2016, 85 pp., \par https://refubium.fu-berlin.de/handle/fub188/7447

[6] A. Heppes, L. Szabó, “On the number of cylinders touching a ball”, Geom. Dedicata, 40:1 (1991), 111–116 | DOI | MR | Zbl

[7] W. Kuperberg, “How many unit cylinders can touch a unit ball? (Problem 3.3)”, DIMACS Workshop on polytopes and convex sets, Rutgers Univ., 1990

[8] R. Kusner, W. Kusner, J. C. Lagarias, S. Shlosman, “Configuration spaces of equal spheres touching a given sphere: the twelve spheres problem”, New trends in intuitive geometry, Bolyai Soc. Math. Stud., 27, János Bolyai Math. Soc., Budapest, 2018, 219–277 ; 2018 (v1 – 2016), 53 pp., arXiv: 1611.10297 | DOI | MR | Zbl

[9] J. C. Lagarias (ed.), The Kepler conjecture. The Hales–Ferguson proof, Springer, New York, 2011, xiv+456 pp. | DOI | MR | Zbl

[10] O. Ogievetsky, S. Shlosman, “The six cylinders problem: $\mathbb D_{3}$-symmetry approach”, Discrete Comput. Geom., publ. online 2019, 1–20 ; 2019 (v1 – 2018), 24 pp., arXiv: 1805.09833 | DOI

[11] O. Ogievetsky, S. Shlosman, Extremal cylinder configurations I: Configuration $C_{\mathfrak{m}}$, 2018, 38 pp., arXiv: 1812.09543

[12] O. Ogievetsky, S. Shlosman, Extremal cylinder configurations II: Configuration $O_{6}$, 2019, 25 pp., arXiv: 1902.08995

[13] O. Ogievetsky, S. Shlosman, Platonic compounds of cylinders, 2019, 35 pp., arXiv: 1904.02043