Critical configurations of solid bodies and the Morse theory of MIN functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 631-657

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the manifold of clusters of non-intersecting congruent solid bodies, all touching the central ball $B\subset\mathbb{R}^{3}$ of radius one. Two main examples are clusters of balls and clusters of infinite cylinders. The notion of critical cluster is introduced, and several critical clusters of balls and of cylinders are studied. In the case of cylinders, some of the critical clusters here are new. The paper also establishes criticality properties of clusters introduced earlier by Kuperberg [7].
Keywords: configurations of balls, configurations of cylinders, rigid clusters, flexible clusters, critical clusters, connected components, Galois symmetries, maxima of non-analytic functions.
Mots-clés : Platonic configurations
@article{RM_2019_74_4_a1,
     author = {O. V. Ogievetsky and S. B. Shlosman},
     title = {Critical configurations of solid bodies and the {Morse} theory of {MIN} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {631--657},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/}
}
TY  - JOUR
AU  - O. V. Ogievetsky
AU  - S. B. Shlosman
TI  - Critical configurations of solid bodies and the Morse theory of MIN functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 631
EP  - 657
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/
LA  - en
ID  - RM_2019_74_4_a1
ER  - 
%0 Journal Article
%A O. V. Ogievetsky
%A S. B. Shlosman
%T Critical configurations of solid bodies and the Morse theory of MIN functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 631-657
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/
%G en
%F RM_2019_74_4_a1
O. V. Ogievetsky; S. B. Shlosman. Critical configurations of solid bodies and the Morse theory of MIN functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 4, pp. 631-657. http://geodesic.mathdoc.fr/item/RM_2019_74_4_a1/