Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 549-551
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2019_74_3_a7,
     author = {A. V. Zvyagin},
     title = {Weak solvability and convergence of solutions for the fractional {Voigt-}$\alpha$ model of a~viscoelastic medium},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {549--551},
     year = {2019},
     volume = {74},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 549
EP  - 551
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/
LA  - en
ID  - RM_2019_74_3_a7
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 549-551
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/
%G en
%F RM_2019_74_3_a7
A. V. Zvyagin. Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/

[1] F. Mainardi, G. Spada, Eur. Phys. J. Spec. Top., 193 (2011), 133–160 | DOI

[2] V. Zvyagin, V. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI

[3] J. Leray, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[4] P. G. Lemarié-Rieusset, The Navier–Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016, xxii+718 pp. | DOI | MR | Zbl

[5] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999, xii+352 pp. | MR | Zbl | Zbl

[6] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012, 416 pp.

[7] R. J. DiPerna, P. L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[8] B. N. Sadovskii, UMN, 27:1(163) (1972), 81–146 | DOI | MR | Zbl