@article{RM_2019_74_3_a7,
author = {A. V. Zvyagin},
title = {Weak solvability and convergence of solutions for the fractional {Voigt-}$\alpha$ model of a~viscoelastic medium},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {549--551},
year = {2019},
volume = {74},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/}
}
TY - JOUR AU - A. V. Zvyagin TI - Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 549 EP - 551 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/ LA - en ID - RM_2019_74_3_a7 ER -
%0 Journal Article %A A. V. Zvyagin %T Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 549-551 %V 74 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/ %G en %F RM_2019_74_3_a7
A. V. Zvyagin. Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a7/
[1] F. Mainardi, G. Spada, Eur. Phys. J. Spec. Top., 193 (2011), 133–160 | DOI
[2] V. Zvyagin, V. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI
[3] J. Leray, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[4] P. G. Lemarié-Rieusset, The Navier–Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016, xxii+718 pp. | DOI | MR | Zbl
[5] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999, xii+352 pp. | MR | Zbl | Zbl
[6] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012, 416 pp.
[7] R. J. DiPerna, P. L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[8] B. N. Sadovskii, UMN, 27:1(163) (1972), 81–146 | DOI | MR | Zbl