Maximum of a catalytic branching random walk
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 546-548
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2019_74_3_a6,
     author = {E. Vl. Bulinskaya},
     title = {Maximum of a~catalytic branching random walk},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {546--548},
     year = {2019},
     volume = {74},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a6/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - Maximum of a catalytic branching random walk
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 546
EP  - 548
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a6/
LA  - en
ID  - RM_2019_74_3_a6
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T Maximum of a catalytic branching random walk
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 546-548
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a6/
%G en
%F RM_2019_74_3_a6
E. Vl. Bulinskaya. Maximum of a catalytic branching random walk. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 546-548. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a6/

[1] A. A. Borovkov, K. A. Borovkov, Asimptoticheskii analiz sluchainykh bluzhdanii, v. 1, Medlenno ubyvayuschie raspredeleniya skachkov, Fizmatlit, M., 2008, 652 pp. | DOI | MR | Zbl

[2] E. Vl. Bulinskaya, Teoriya veroyatn. i ee primen., 59:4 (2014), 639–666 | DOI | DOI | MR | Zbl

[3] E. Vl. Bulinskaya, Dokl. RAN, 465:4 (2015), 398–402 | DOI | MR | Zbl

[4] Ph. Carmona, Y. Hu, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 327–351 | DOI | MR | Zbl

[5] S. A. Molchanov, E. B. Yarovaya, Dokl. RAN, 446:3 (2012), 259–262 | DOI | MR | Zbl

[6] Z. Shi, Branching random walks (Saint-Flour, 2012), Lecture Notes in Math., 2151, Springer, Cham, 2015, x+133 pp. | DOI | MR | Zbl

[7] V. A. Vatutin, V. A. Topchii, Matem. tr., 14:2 (2011), 28–72 | DOI | MR | Zbl