Mots-clés : Baum–Connes conjecture
@article{RM_2019_74_3_a4,
author = {G. Yu},
title = {The {Novikov} conjecture},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {525--541},
year = {2019},
volume = {74},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a4/}
}
G. Yu. The Novikov conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 525-541. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a4/
[1] P. Antonini, S. Azzali, G. Skandalis, The Baum–Connes conjecture localised at the unit element of a discrete group, 2018, 19 pp., arXiv: 1807.05892
[2] G. N. Arzhantseva, T. Delzant, Examples of random groups, Preprint, 2011 (v1 – 2008), 30 pp. http://www.mat.univie.ac.at/~arjantseva/Abs/random.pdf
[3] A. C. Bartels, “Squeezing and higher algebraic $K$-theory”, $K$-Theory, 28:1 (2003), 19–37 | DOI | MR | Zbl
[4] P. Baum, A. Connes, “K-theory for discrete groups”, Operator algebras and applications, v. 1, London Math. Soc. Lecture Note Ser., 135, Cambridge Univ. Press, Cambridge, 1988, 1–20 | DOI | MR | Zbl
[5] P. Baum, A. Connes, N. Higson, “Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras”, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994, 240–291 | DOI | MR | Zbl
[6] A. Bartels, W. Lück, “The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$-groups”, Ann. of Math. (2), 175:2 (2012), 631–689 | DOI | MR | Zbl
[7] A. Bartels, W. Lück, H. Reich, “The $K$-theoretic Farrell–Jones conjecture for hyperbolic groups”, Invent. Math., 172:1 (2008), 29–70 | DOI | MR | Zbl
[8] A. Bartels, D. Rosenthal, “On the $K$-theory of groups with finite asymptotic dimension”, J. Reine Angew. Math., 2007:612 (2007), 35–57 | DOI | MR | Zbl
[9] M. E. B. Bekka, P.-A. Cherix, A. Valette, “Proper affine isometric actions of amenable groups”, Novikov conjectures, index theorems and rigidity (Oberwolfach, 1993), v. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 1–4 | DOI | MR | Zbl
[10] G. Bell, A. Dranishnikov, “On asymptotic dimension of groups”, Algebr. Geom. Topol., 1 (2001), 57–71 | DOI | MR | Zbl
[11] G. C. Bell, A. N. Dranishnikov, “A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory”, Trans. Amer. Math. Soc., 358:11 (2006), 4749–4764 | DOI | MR | Zbl
[12] M. Bestvina, K. Bromberg, K. Fujiwara, “Constructing group actions on quasi-trees and applications to mapping class groups”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 1–64 | DOI | MR | Zbl
[13] M. Bestvina, V. Guirardel, C. Horbez, Boundary amenability of $\operatorname{Out}(F_N)$, 2017, 53 pp., arXiv: 1705.07017
[14] N. Brown, E. Guentner, “Uniform embeddings of bounded geometry spaces into reflexive Banach space”, Proc. Amer. Math. Soc., 133:7 (2005), 2045–2050 | DOI | MR | Zbl
[15] G. Carlsson, B. Goldfarb, “The integral $K$-theoretic Novikov conjecture for groups with finite asymptotic dimension”, Invent. Math., 157:2 (2004), 405–418 | DOI | MR | Zbl
[16] G. Carlsson, E. K. Pedersen, “Controlled algebra and the Novikov conjectures for $K$- and $L$-theory”, Topology, 34:3 (1995), 731–758 | DOI | MR | Zbl
[17] S. S. Chang, S. Ferry, G. Yu, “Bounded rigidity of manifolds and asymptotic dimension growth”, J. K-Theory, 1:1 (2008), 129–144 | DOI | MR | Zbl
[18] A. Connes, “Cyclic cohomology and the transverse fundamental class of a foliation”, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 52–144 | MR | Zbl
[19] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp. | MR | Zbl
[20] A. Connes, M. Gromov, H. Moscovici, “Group cohomology with Lipschitz control and higher signatures”, Geom. Funct. Anal., 3:1 (1993), 1–78 | DOI | MR | Zbl
[21] A. Connes, N. Higson, “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris Sér. I Math., 311:2 (1990), 101–106 | MR | Zbl
[22] A. Connes, H. Moscovici, “Cyclic cohomology, the Novikov conjecture and hyperbolic groups”, Topology, 29:3 (1990), 345–388 | DOI | MR | Zbl
[23] M. W. Davis, “Groups generated by reflections and aspherical manifolds not covered by Euclidean space”, Ann. of Math. (2), 117:2 (1983), 293–324 | DOI | MR | Zbl
[24] A. N. Dranishnikov, S. C. Ferry, S. A. Weinberger, “An etale approach to the Novikov conjecture”, Comm. Pure Appl. Math., 61:2 (2008), 139–155 | DOI | MR | Zbl
[25] A. Dranishnikov, T. Januszkiewicz, “Every Coxeter group acts amenably on a compact space”, Proceedings of the 1999 topology and dynamics conference (Salt Lake City, UT), Topology Proc., 24:Spring (1999), 135–141 | MR | Zbl
[26] F. T. Farrell, W. C. Hsiang, “On Novikov's conjecture for non-positively curved manifolds. I”, Ann. of Math. (2), 113:1 (1981), 199–209 | DOI | MR | Zbl
[27] F. T. Farrell, L. E. Jones, “A topological analogue of Mostow's rigidity theorem”, J. Amer. Math. Soc., 2:2 (1989), 257–370 | DOI | MR | Zbl
[28] F. T. Farrell, L. E. Jones, Classical aspherical manifolds, CBMS Regional Conf. Ser. in Math., 75, Conf. Board Math. Sci., Washington, DC; Amer. Math. Soc., Providence, RI, 1990, viii+54 pp. | DOI | MR | Zbl
[29] F. T. Farrell, L. E. Jones, “Topological rigidity for compact nonpositively curved manifolds”, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, 229–274 | MR | Zbl
[30] F. T. Farrell, L. E. Jones, “Rigidity for aspherical manifolds with $\pi_1\subset\operatorname{GL}_m(\mathbb R)$”, Asian J. Math., 2:2 (1998), 215–262 | DOI | MR | Zbl
[31] S. C. Ferry, E. K. Pedersen, “Epsilon surgery theory”, Novikov conjectures, index theorems and rigidity (Oberwolfach, 1993), v. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 167–226 | DOI | MR | Zbl
[32] S. C. Ferry, S. Weinberger, “Curvature, tangentiality, and controlled topology”, Invent. Math., 105:2 (1991), 401–414 | DOI | MR | Zbl
[33] S. C. Ferry, S. Weinberger, “A coarse approach to the Novikov conjecture”, Novikov conjectures, index theorems, and rigidity (Oberwolfach, 1993), v. 1, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 147–163 | DOI | MR | Zbl
[34] D. Fisher, L. Silberman, “Groups not acting on manifolds”, Int. Math. Res. Not. IMRN, 2008:16 (2008), rnn060, 11 pp. | DOI | MR | Zbl
[35] S. Gong, J. Wu, G. Yu, The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert–Hadamard spaces, 2019 (v1 – 2018), 52 pp., arXiv: 1811.02086
[36] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl
[37] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl
[38] M. Gromov, “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR | Zbl
[39] M. Gromov, “Spaces and questions”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., 2000, Special Volume, Part I, 118–161 | MR | Zbl
[40] M. Gromov, “Random walks in random groups”, Geom. Funct. Anal., 13:1 (2003), 73–146 | DOI | MR | Zbl
[41] E. Guentner, N. Higson, S. Weinberger, “The Novikov conjecture for linear groups”, Publ. Math. Inst. Hautes Études Sci., 101 (2005), 243–268 | DOI | MR | Zbl
[42] E. Guentner, R. Tessera, G. Yu, “A notion of geometric complexity and its application to topological rigidity”, Invent. Math., 189:2 (2012), 315–357 | DOI | MR | Zbl
[43] E. Guentner, R. Tessera, G. Yu, “Discrete groups with finite decomposition complexity”, Groups Geom. Dyn., 7:2 (2013), 377–402 | DOI | MR | Zbl
[44] U. Hamenstädt, “Geometry of the mapping class groups. I. Boundary amenability”, Invent. Math., 175:3 (2009), 545–609 | DOI | MR | Zbl
[45] B. Hanke, T. Schick, “The strong Novikov conjecture for low degree cohomology”, Geom. Dedicata, 135 (2008), 119–127 | DOI | MR | Zbl
[46] N. Higson, “Bivariant $K$-theory and the Novikov conjecture”, Geom. Funct. Anal., 10:3 (2000), 563–581 | DOI | MR | Zbl
[47] N. Higson, G. Kasparov, “$E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space”, Invent. Math., 144:1 (2001), 23–74 | DOI | MR | Zbl
[48] M. Hilsum, G. Skandalis, “Invariance par homotopie de la signature à coefficients dans un fibré presque plat”, J. Reine Angew. Math., 1992:423 (1992), 73–99 | DOI | MR | Zbl
[49] L. Ji, “The integral Novikov conjectures for linear groups containing torsion elements”, J. Topol., 1:2 (2008), 306–316 | DOI | MR | Zbl
[50] W. B. Johnson, N. L. Randrianarivony, “$\ell_p$ $(p > 2)$ does not coarsely embed into a Hilbert space”, Proc. Amer. Math. Soc., 134 (2006), 1045–1050 | DOI | MR | Zbl
[51] G. G. Kasparov, “Equivariant $KK$-theory and the Novikov conjecture”, Invent. Math., 91:1 (1988), 147–201 | DOI | MR | Zbl
[52] G. Kasparov, G. Skandalis, “Groups acting properly on “bolic” spaces and the Novikov conjecture”, Ann. of Math. (2), 158:1 (2003), 165–206 | DOI | MR | Zbl
[53] G. Kasparov, G. Yu, “The Novikov conjecture and geometry of Banach spaces”, Geom. Topol., 16:3 (2012), 1859–1880 | DOI | MR | Zbl
[54] Y. Kida, The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc., 196, No 916, Amer. Math. Soc., Providence, RI, 2008, viii+190 pp. | DOI | MR | Zbl
[55] M. Mendel, A. Naor, “Metric cotype”, Ann. of Math. (2), 168:1 (2008), 247–298 | DOI | MR | Zbl
[56] V. Mathai, “The Novikov conjecture for low degree cohomology classes”, Geom. Dedicata, 99 (2003), 1–15 | DOI | MR | Zbl
[57] A. S. Miščenko, “Infinite-dimensional representations of discrete groups, and higher signatures”, Math. USSR-Izv., 8:1 (1974), 85–111 | DOI | MR | Zbl
[58] S. P. Novikov, “Topological invariance of rational Pontrjagin classes”, Soviet Math. Dokl., 6 (1965), 921–923 | MR | Zbl
[59] S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of K-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292 | DOI | DOI | MR | Zbl | Zbl
[60] P. W. Nowak, G. Yu, Large scale geometry, EMS Textbk. Math., Eur. Math. Soc., Zürich, 2012, xiv+189 pp. | DOI | MR | Zbl
[61] D. Osajda, Small cancellation labellings of some infinite graphs and applications, 2014, 27 pp., arXiv: 1406.5015
[62] H. Oyono-Oyono, G. Yu, “On quantitative operator $K$-theory”, Ann. Inst. Fourier (Grenoble), 65:2 (2015), 605–674 | DOI | MR | Zbl
[63] D. A. Ramras, R. Tessera, G. Yu, “Finite decomposition complexity and the integral Novikov conjecture for higher algebraic $K$-theory”, J. Reine Angew. Math., 694 (2014), 129–178 | DOI | MR | Zbl
[64] J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc., 104, No 497, Amer. Math. Soc., Providence, RI, 1993, x+90 pp. | DOI | MR | Zbl
[65] J. Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conf. Ser. in Math., 90, Conf. Board Math. Sci., Washington, DC; Amer. Math. Soc., Providence, RI, 1996, x+100 pp. | DOI | MR | Zbl
[66] J. Roe, “Hyperbolic groups have finite asymptotic dimension”, Proc. Amer. Math. Soc., 133:9 (2005), 2489–2490 | DOI | MR | Zbl
[67] J. Rosenberg, “$C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 197–212 | DOI | MR | Zbl
[68] J. Rosenberg, “Manifolds of positive scalar curvature: a progress report”, Surveys in differential geometry, v. XI, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 259–294 | DOI | MR | Zbl
[69] Z. Sela, “Uniform embeddings of hyperbolic groups in Hilbert spaces”, Israel J. Math., 80:1-2 (1992), 171–181 | DOI | MR | Zbl
[70] G. Skandalis, J. L. Tu, G. Yu, “The coarse Baum–Connes conjecture and groupoids”, Topology, 41:4 (2002), 807–834 | DOI | MR | Zbl
[71] S. Weinberger, “Aspects of the Novikov conjecture”, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 1990, 281–297 | DOI | MR | Zbl
[72] S. Weinberger, Variations on a theme of Borel, Book draft, 2017, 326 pp. http://math.uchicago.edu/~shmuell/VTBdraft.pdf
[73] S. Weinberger, Z. Xie, G. Yu, “Additivity of higher rho invariants and nonrigidity of topological manifolds”, Comm. Pure Appl. Math. (to appear); 2019 (v1 – 2016), 103 pp., arXiv: 1608.03661
[74] S. Weinberger, G. Yu, “Finite part of operator $K$-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds”, Geom. Topol., 19:5 (2015), 2767–2799 | DOI | MR | Zbl
[75] R. Willett, G. Yu, Higher index theory, Book draft, 2019, 503 pp.,\par https://math.hawaii.edu/~rufus/Skeleton.pdf
[76] G. Yu, “The Novikov conjecture for groups with finite asymptotic dimension”, Ann. of Math. (2), 147:2 (1998), 325–355 | DOI | MR | Zbl
[77] G. Yu, “The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space”, Invent. Math., 139:1 (2000), 201–240 | DOI | MR | Zbl