@article{RM_2019_74_3_a3,
author = {I. Yu. Limonchenko and T. E. Panov and G. S. Chernykh},
title = {$SU$-bordism: structure results and geometric representatives},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {461--524},
year = {2019},
volume = {74},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/}
}
TY - JOUR AU - I. Yu. Limonchenko AU - T. E. Panov AU - G. S. Chernykh TI - $SU$-bordism: structure results and geometric representatives JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 461 EP - 524 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/ LA - en ID - RM_2019_74_3_a3 ER -
%0 Journal Article %A I. Yu. Limonchenko %A T. E. Panov %A G. S. Chernykh %T $SU$-bordism: structure results and geometric representatives %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 461-524 %V 74 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/ %G en %F RM_2019_74_3_a3
I. Yu. Limonchenko; T. E. Panov; G. S. Chernykh. $SU$-bordism: structure results and geometric representatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
[1] R. Altman, J. Gray, Y.-H. He, V. Jejjala, B. D. Nelson, “A Calabi–Yau database: threefolds constructed from the Kreuzer–Skarke list”, J. High Energy Phys., 2015:2 (2015), 158, front matter+48 pp. | DOI | MR | Zbl
[2] D. W. Anderson, E. H. Brown, Jr., F. P. Peterson, “$\mathrm{SU}$-cobordism, $\mathrm{KO}$-characteristic numbers, and the Kervaire invariant”, Ann. of Math. (2), 83:1 (1966), 54–67 | DOI | MR | Zbl
[3] M. F. Atiyah, “Bordism and cobordism”, Proc. Cambridge Philos. Soc., 57 (1961), 200–208 | DOI | MR | Zbl
[4] B. G. Averbukh, “Algebraicheskoe stroenie grupp vnutrennikh gomologii”, Dokl. AN SSSR, 125:1 (1959), 11–14 | MR | Zbl
[5] N. A. Baas, “On the convergence of the Adams spectral sequences”, Math. Scand., 27 (1970), 145–150 | DOI | MR | Zbl
[6] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl
[7] A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR | Zbl
[8] B. I. Botvinnik, “The structure of the ring $MSU_*$”, Math. USSR-Sb., 69:2 (1991), 581–596 | DOI | MR | Zbl
[9] B. I. Botvinnik, Manifolds with singularities and the Adams–Novikov spectral sequence, London Math. Soc. Lecture Note Ser., 170, Cambridge Univ. Press, Cambridge, 1992, xvi+181 pp. | DOI | MR | Zbl
[10] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | DOI | MR | Zbl
[11] V. M. Bukhshtaber, “Proektory v unitarnykh kobordizmakh, svyazannye s $SU$-teoriei”, UMN, 27:6(168) (1972), 231–232 | MR | Zbl
[12] V. M. Bukhshtaber, “Cobordisms in problems of algebraic topology”, J. Soviet Math., 7:4 (1977), 629–653 | DOI | MR | Zbl
[13] V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl
[14] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87 | DOI | DOI | MR
[15] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl
[16] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | MR | Zbl
[17] V. Buchstaber, T. Panov, N. Ray, “Toric genera”, Int. Math. Res. Not. IMRN, 2010:16 (2010), 3207–3262 | DOI | MR | Zbl
[18] V. M. Bukhshtaber, N. Ray, “Toric manifolds and complex cobordisms”, Russian Math. Surveys, 53:2 (1998), 371–373 | DOI | DOI | MR | Zbl
[19] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR | Zbl
[20] C. Chiara, A. Garbagnati, G. Mongardi, “Calabi–Yau quotients of hyperkähler four-folds”, Canad. J. Math., 71:1 (2019), 45–92 ; (2016), 42 pp., arXiv: 1607.02416 | DOI | MR | Zbl
[21] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb., N. F., 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964, vii+148 pp. | DOI | MR | Zbl | Zbl
[22] P. E. Conner, E. E. Floyd, Torsion in $\mathrm{SU}$-bordism, Mem. Amer. Math. Soc., 60, Amer. Math. Soc., Providence, RI, 1966, 74 pp. | MR | Zbl
[23] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl
[24] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl
[25] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[26] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl
[27] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973, 280 pp. ; F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb., N. F., 9, 2. erg. Aufl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, vii+181 pp. ; F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, 3rd ed., Springer Verlag, New York, 1966, x+232 СЃ. | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[28] M. Kreuzer, H. Skarke, Calabi–Yau data http://hep.itp.tuwien.ac.at/~kreuzer/CY/
[29] P. S. Landweber, “Cobordism operations and Hopf algebras”, Trans. Amer. Math. Soc., 129 (1967), 94–110 | DOI | MR | Zbl
[30] I. Yu. Limonchenko, Z. Lü, T. E. Panov, “Calabi–Yau hypersurfaces and $\mathrm{SU}$-bordism”, Proc. Steklov Inst. Math., 302 (2018), 270–278 | DOI | DOI | MR
[31] Z. Lü, T. Panov, “On toric generators in the unitary and special unitary bordism rings”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR | Zbl
[32] Z. Lü, W. Wang, “Examples of quasitoric manifolds as special unitary manifolds”, Math. Res. Lett., 23:5 (2016), 1453–1468 | DOI | MR | Zbl
[33] J. Milnor, “On the cobordism ring $\Omega^{\ast}$ and a complex analogue. I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl
[34] O. K. Mironov, “Existence of multiplicative structures in the theories of cobordism with singularities”, Math. USSR-Izv., 9:5 (1975), 1007–1034 | DOI | MR | Zbl
[35] A. S. Mishchenko, “Spectral sequences of Adams type”, Math. Notes, 1:3 (1967), 226–230 | DOI | MR | Zbl
[36] J. E. Mosley, The greatest common divisor of multinomial coefficients, 2015 (v1 – 2014), 4 pp., arXiv: 1411.0706
[37] J. E. Mosley, In search of a class of representatives for $SU$-cobordism using the Witten genus, Ph. D. Thesis, Univ. of Kentucky, 2016, iii+44 pp. | DOI | MR
[38] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720 | MR | Zbl
[39] S. P. Novikov, “Homotopy properties of Thom complexes”, Topological library, Part 1: cobordisms and their applications, Ser. Knots Everything, 39, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | DOI | MR | MR | Zbl | Zbl
[40] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl
[41] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl
[42] S. D. Oshanin, “The signature of SU-varieties”, Math. Notes, 13:1 (1973), 57–60 | DOI | MR | Zbl
[43] L. S. Pontryagin, “Smooth manifolds and their applications in homotopy theory”, Amer. Math. Soc. Transl. Ser. 2, 11, Amer. Math. Soc., Providence, RI, 1959, 1–114 | DOI | MR | MR | Zbl | Zbl
[44] D. Quillen, “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math., 7:1 (1971), 29–56 | DOI | MR | Zbl
[45] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure Appl. Math., 121, Academic Press Inc., Orlando, FL, 1986, xx+413 pp. | MR | Zbl
[46] V. A. Rokhlin, “Novye rezultaty teorii chetyrekhmernykh mnogoobrazii”, Dokl. AN SSSR, 84:3 (1952), 221–224 | MR | Zbl
[47] V. A. Rohlin, “Intrinsic homology theory”, Amer. Math. Soc. Transl. Ser. 2, 30, Amer. Math. Soc., Providence, RI, 1963, 255–271 | DOI | MR | MR | Zbl
[48] Yu. B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monogr. Math., Springer-Verlag, Berlin, 1998, xii+587 pp. | DOI | MR | Zbl
[49] G. D. Solomadin, Yu. M. Ustinovskiy, “Projective toric polynomial generators in the unitary cobordism ring”, Sb. Math., 207:11 (2016), 1601–1624 | DOI | DOI | MR | Zbl
[50] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968, v+354+lvi pp. | MR | MR | Zbl | Zbl
[51] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 | DOI | MR | MR | Zbl
[52] V. V. Vershinin, Cobordisms and spectral sequences, Transl. Math. Monogr., 130, Amer. Math. Soc., Providence, RI, 1993, vi+97 pp. | MR | Zbl
[53] C. T. C. Wall, “Determination of the cobordism ring”, Ann. of Math. (2), 72:2 (1960), 292–311 | DOI | MR | Zbl
[54] C. T. C. Wall, “Addendum to a paper of Conner and Floyd”, Proc. Cambridge Philos. Soc., 62:2 (1966), 171–175 | DOI | MR | Zbl
[55] A. Wilfong, “Smooth projective toric variety representatives in complex cobordism”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK “Nauka/Interperiodika”, M., 2014, 347–367 | DOI | MR | Zbl
[56] A. Wilfong, “Toric polynomial generators of complex cobordism”, Algebr. Geom. Topol., 16:3 (2016), 1473–1491 | DOI | MR | Zbl