$SU$-bordism: structure results and geometric representatives
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The first part of this survey gives a modernised exposition of the structure of the special unitary bordism ring, by combining the classical geometric methods of Conner–Floyd, Wall, and Stong with the Adams–Novikov spectral sequence and formal group law techniques that emerged after the fundamental 1967 paper of Novikov. In the second part toric topology is used to describe geometric representatives in $SU$-bordism classes, including toric, quasi-toric, and Calabi–Yau manifolds.
Bibliography: 56 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
special unitary bordism, $SU$-manifolds, Chern classes, toric varieties, quasi-toric manifolds, Calabi–Yau manifolds.
                    
                    
                    
                  
                
                
                @article{RM_2019_74_3_a3,
     author = {I. Yu. Limonchenko and T. E. Panov and G. S. Chernykh},
     title = {$SU$-bordism: structure results and geometric representatives},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {461--524},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/}
}
                      
                      
                    TY - JOUR AU - I. Yu. Limonchenko AU - T. E. Panov AU - G. S. Chernykh TI - $SU$-bordism: structure results and geometric representatives JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 461 EP - 524 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/ LA - en ID - RM_2019_74_3_a3 ER -
%0 Journal Article %A I. Yu. Limonchenko %A T. E. Panov %A G. S. Chernykh %T $SU$-bordism: structure results and geometric representatives %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 461-524 %V 74 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/ %G en %F RM_2019_74_3_a3
I. Yu. Limonchenko; T. E. Panov; G. S. Chernykh. $SU$-bordism: structure results and geometric representatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
