$SU$-bordism: structure results and geometric representatives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of this survey gives a modernised exposition of the structure of the special unitary bordism ring, by combining the classical geometric methods of Conner–Floyd, Wall, and Stong with the Adams–Novikov spectral sequence and formal group law techniques that emerged after the fundamental 1967 paper of Novikov. In the second part toric topology is used to describe geometric representatives in $SU$-bordism classes, including toric, quasi-toric, and Calabi–Yau manifolds. Bibliography: 56 titles.
Keywords: special unitary bordism, $SU$-manifolds, Chern classes, toric varieties, quasi-toric manifolds, Calabi–Yau manifolds.
@article{RM_2019_74_3_a3,
     author = {I. Yu. Limonchenko and T. E. Panov and G. S. Chernykh},
     title = {$SU$-bordism: structure results and geometric representatives},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {461--524},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/}
}
TY  - JOUR
AU  - I. Yu. Limonchenko
AU  - T. E. Panov
AU  - G. S. Chernykh
TI  - $SU$-bordism: structure results and geometric representatives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 461
EP  - 524
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
LA  - en
ID  - RM_2019_74_3_a3
ER  - 
%0 Journal Article
%A I. Yu. Limonchenko
%A T. E. Panov
%A G. S. Chernykh
%T $SU$-bordism: structure results and geometric representatives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 461-524
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
%G en
%F RM_2019_74_3_a3
I. Yu. Limonchenko; T. E. Panov; G. S. Chernykh. $SU$-bordism: structure results and geometric representatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/