$SU$-bordism: structure results and geometric representatives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first part of this survey gives a modernised exposition of the structure of the special unitary bordism ring, by combining the classical geometric methods of Conner–Floyd, Wall, and Stong with the Adams–Novikov spectral sequence and formal group law techniques that emerged after the fundamental 1967 paper of Novikov. In the second part toric topology is used to describe geometric representatives in $SU$-bordism classes, including toric, quasi-toric, and Calabi–Yau manifolds. Bibliography: 56 titles.
Keywords: special unitary bordism, $SU$-manifolds, Chern classes, toric varieties, quasi-toric manifolds, Calabi–Yau manifolds.
@article{RM_2019_74_3_a3,
     author = {I. Yu. Limonchenko and T. E. Panov and G. S. Chernykh},
     title = {$SU$-bordism: structure results and geometric representatives},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {461--524},
     year = {2019},
     volume = {74},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/}
}
TY  - JOUR
AU  - I. Yu. Limonchenko
AU  - T. E. Panov
AU  - G. S. Chernykh
TI  - $SU$-bordism: structure results and geometric representatives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 461
EP  - 524
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
LA  - en
ID  - RM_2019_74_3_a3
ER  - 
%0 Journal Article
%A I. Yu. Limonchenko
%A T. E. Panov
%A G. S. Chernykh
%T $SU$-bordism: structure results and geometric representatives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 461-524
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/
%G en
%F RM_2019_74_3_a3
I. Yu. Limonchenko; T. E. Panov; G. S. Chernykh. $SU$-bordism: structure results and geometric representatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 461-524. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a3/

[1] R. Altman, J. Gray, Y.-H. He, V. Jejjala, B. D. Nelson, “A Calabi–Yau database: threefolds constructed from the Kreuzer–Skarke list”, J. High Energy Phys., 2015:2 (2015), 158, front matter+48 pp. | DOI | MR | Zbl

[2] D. W. Anderson, E. H. Brown, Jr., F. P. Peterson, “$\mathrm{SU}$-cobordism, $\mathrm{KO}$-characteristic numbers, and the Kervaire invariant”, Ann. of Math. (2), 83:1 (1966), 54–67 | DOI | MR | Zbl

[3] M. F. Atiyah, “Bordism and cobordism”, Proc. Cambridge Philos. Soc., 57 (1961), 200–208 | DOI | MR | Zbl

[4] B. G. Averbukh, “Algebraicheskoe stroenie grupp vnutrennikh gomologii”, Dokl. AN SSSR, 125:1 (1959), 11–14 | MR | Zbl

[5] N. A. Baas, “On the convergence of the Adams spectral sequences”, Math. Scand., 27 (1970), 145–150 | DOI | MR | Zbl

[6] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl

[7] A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR | Zbl

[8] B. I. Botvinnik, “The structure of the ring $MSU_*$”, Math. USSR-Sb., 69:2 (1991), 581–596 | DOI | MR | Zbl

[9] B. I. Botvinnik, Manifolds with singularities and the Adams–Novikov spectral sequence, London Math. Soc. Lecture Note Ser., 170, Cambridge Univ. Press, Cambridge, 1992, xvi+181 pp. | DOI | MR | Zbl

[10] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | DOI | MR | Zbl

[11] V. M. Bukhshtaber, “Proektory v unitarnykh kobordizmakh, svyazannye s $SU$-teoriei”, UMN, 27:6(168) (1972), 231–232 | MR | Zbl

[12] V. M. Bukhshtaber, “Cobordisms in problems of algebraic topology”, J. Soviet Math., 7:4 (1977), 629–653 | DOI | MR | Zbl

[13] V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl

[14] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87 | DOI | DOI | MR

[15] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[16] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | MR | Zbl

[17] V. Buchstaber, T. Panov, N. Ray, “Toric genera”, Int. Math. Res. Not. IMRN, 2010:16 (2010), 3207–3262 | DOI | MR | Zbl

[18] V. M. Bukhshtaber, N. Ray, “Toric manifolds and complex cobordisms”, Russian Math. Surveys, 53:2 (1998), 371–373 | DOI | DOI | MR | Zbl

[19] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR | Zbl

[20] C. Chiara, A. Garbagnati, G. Mongardi, “Calabi–Yau quotients of hyperkähler four-folds”, Canad. J. Math., 71:1 (2019), 45–92 ; (2016), 42 pp., arXiv: 1607.02416 | DOI | MR | Zbl

[21] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb., N. F., 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964, vii+148 pp. | DOI | MR | Zbl | Zbl

[22] P. E. Conner, E. E. Floyd, Torsion in $\mathrm{SU}$-bordism, Mem. Amer. Math. Soc., 60, Amer. Math. Soc., Providence, RI, 1966, 74 pp. | MR | Zbl

[23] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl

[24] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[25] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[26] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[27] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973, 280 pp. ; F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb., N. F., 9, 2. erg. Aufl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, vii+181 pp. ; F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, 3rd ed., Springer Verlag, New York, 1966, x+232 СЃ. | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[28] M. Kreuzer, H. Skarke, Calabi–Yau data http://hep.itp.tuwien.ac.at/~kreuzer/CY/

[29] P. S. Landweber, “Cobordism operations and Hopf algebras”, Trans. Amer. Math. Soc., 129 (1967), 94–110 | DOI | MR | Zbl

[30] I. Yu. Limonchenko, Z. Lü, T. E. Panov, “Calabi–Yau hypersurfaces and $\mathrm{SU}$-bordism”, Proc. Steklov Inst. Math., 302 (2018), 270–278 | DOI | DOI | MR

[31] Z. Lü, T. Panov, “On toric generators in the unitary and special unitary bordism rings”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR | Zbl

[32] Z. Lü, W. Wang, “Examples of quasitoric manifolds as special unitary manifolds”, Math. Res. Lett., 23:5 (2016), 1453–1468 | DOI | MR | Zbl

[33] J. Milnor, “On the cobordism ring $\Omega^{\ast}$ and a complex analogue. I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl

[34] O. K. Mironov, “Existence of multiplicative structures in the theories of cobordism with singularities”, Math. USSR-Izv., 9:5 (1975), 1007–1034 | DOI | MR | Zbl

[35] A. S. Mishchenko, “Spectral sequences of Adams type”, Math. Notes, 1:3 (1967), 226–230 | DOI | MR | Zbl

[36] J. E. Mosley, The greatest common divisor of multinomial coefficients, 2015 (v1 – 2014), 4 pp., arXiv: 1411.0706

[37] J. E. Mosley, In search of a class of representatives for $SU$-cobordism using the Witten genus, Ph. D. Thesis, Univ. of Kentucky, 2016, iii+44 pp. | DOI | MR

[38] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720 | MR | Zbl

[39] S. P. Novikov, “Homotopy properties of Thom complexes”, Topological library, Part 1: cobordisms and their applications, Ser. Knots Everything, 39, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | DOI | MR | MR | Zbl | Zbl

[40] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl

[41] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl

[42] S. D. Oshanin, “The signature of SU-varieties”, Math. Notes, 13:1 (1973), 57–60 | DOI | MR | Zbl

[43] L. S. Pontryagin, “Smooth manifolds and their applications in homotopy theory”, Amer. Math. Soc. Transl. Ser. 2, 11, Amer. Math. Soc., Providence, RI, 1959, 1–114 | DOI | MR | MR | Zbl | Zbl

[44] D. Quillen, “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math., 7:1 (1971), 29–56 | DOI | MR | Zbl

[45] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure Appl. Math., 121, Academic Press Inc., Orlando, FL, 1986, xx+413 pp. | MR | Zbl

[46] V. A. Rokhlin, “Novye rezultaty teorii chetyrekhmernykh mnogoobrazii”, Dokl. AN SSSR, 84:3 (1952), 221–224 | MR | Zbl

[47] V. A. Rohlin, “Intrinsic homology theory”, Amer. Math. Soc. Transl. Ser. 2, 30, Amer. Math. Soc., Providence, RI, 1963, 255–271 | DOI | MR | MR | Zbl

[48] Yu. B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monogr. Math., Springer-Verlag, Berlin, 1998, xii+587 pp. | DOI | MR | Zbl

[49] G. D. Solomadin, Yu. M. Ustinovskiy, “Projective toric polynomial generators in the unitary cobordism ring”, Sb. Math., 207:11 (2016), 1601–1624 | DOI | DOI | MR | Zbl

[50] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968, v+354+lvi pp. | MR | MR | Zbl | Zbl

[51] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 | DOI | MR | MR | Zbl

[52] V. V. Vershinin, Cobordisms and spectral sequences, Transl. Math. Monogr., 130, Amer. Math. Soc., Providence, RI, 1993, vi+97 pp. | MR | Zbl

[53] C. T. C. Wall, “Determination of the cobordism ring”, Ann. of Math. (2), 72:2 (1960), 292–311 | DOI | MR | Zbl

[54] C. T. C. Wall, “Addendum to a paper of Conner and Floyd”, Proc. Cambridge Philos. Soc., 62:2 (1966), 171–175 | DOI | MR | Zbl

[55] A. Wilfong, “Smooth projective toric variety representatives in complex cobordism”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK “Nauka/Interperiodika”, M., 2014, 347–367 | DOI | MR | Zbl

[56] A. Wilfong, “Toric polynomial generators of complex cobordism”, Algebr. Geom. Topol., 16:3 (2016), 1473–1491 | DOI | MR | Zbl