@article{RM_2019_74_3_a2,
author = {A. I. Efimov},
title = {On the homotopy finiteness of {DG} categories},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {431--460},
year = {2019},
volume = {74},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/}
}
A. I. Efimov. On the homotopy finiteness of DG categories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 431-460. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/
[1] M. Ballard, D. Deliu, D. Favero, M. U. Isik, L. Katzarkov, “Resolutions in factorization categories”, Adv. Math., 295 (2016), 195–249 | DOI | MR | Zbl
[2] E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302 | DOI | MR | Zbl
[3] A. I. Bondal, M. M. Kapranov, “Enhanced triangulated categories”, Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl
[4] A. Bondal, D. Orlov, “Derived categories of coherent sheaves”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. II, Higher Ed. Press, Beijing, 2002, 47–56 | MR | Zbl
[5] A. Bondal, M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | DOI | MR | Zbl
[6] V. Drinfeld, “DG quotients of DG categories”, J. Algebra, 272:2 (2004), 643–691 | DOI | MR | Zbl
[7] V. Drinfeld, “On the notion of geometric realization”, Mosc. Math. J., 4:3 (2004), 619–626 | DOI | MR | Zbl
[8] A. I. Efimov, “Homotopy finiteness of some DG categories from algebraic geometry”, J. Eur. Math. Soc. (JEMS) (to appear); 2018 (v1 – 2013), 70 pp., arXiv: 1308.0135
[9] A. I. Efimov, Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration, 2018, 21 pp., arXiv: 1805.09283
[10] A. Efimov, “Homotopy finiteness of derived categories of coherent D-modules” (in preparation)
[11] A. I. Efimov, L. Positselski, “Coherent analogues of matrix factorizations and relative singularity categories”, Algebra Number Theory, 9:5 (2015), 1159–1292 | DOI | MR | Zbl
[12] P. Gabriel, “Sur les catégories abéliennes localement noethériennes et leurs applications aux algèbres étudiées par Dieudonné”, Séminaire J.-P. Serre 1959/1960, mimeographed notes, Collège de France, Paris, 1962
[13] P. Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl
[14] W. Geigle, H. Lenzing, “Perpendicular categories with applications to representations and sheaves”, J. Algebra, 144:2 (1991), 273–343 | DOI | MR | Zbl
[15] M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999, xii+209 pp. | MR | Zbl
[16] J. F. Jardine, “A closed model structure for differential graded algebras”, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., 17, Amer. Math. Soc., Providence, RI, 1997, 55–58 | MR | Zbl
[17] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4), 27:1 (1994), 63–102 | DOI | MR | Zbl
[18] B. Keller, “On the cyclic homology category of exact categories”, J. Pure Appl. Algebra, 136:1 (1999), 1–56 | DOI | MR | Zbl
[19] M. Kontsevich, Y. Soibelman, “Notes on $A_{\infty}$-algebras, $A_{\infty}$-categories and non-commutative geometry”, Homological mirror symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 153–219 | DOI | MR | Zbl
[20] H. Krause, “The stable derived category of a noetherian scheme”, Compos. Math., 141:5 (2005), 1128–1162 | DOI | MR | Zbl
[21] A. Kuznetsov, V. A. Lunts, “Categorical resolutions of irrational singularities”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4536–4625 | DOI | MR | Zbl
[22] V. A. Lunts, “Categorical resolution of singularities”, J. Algebra, 323:10 (2010), 2977–3003 | DOI | MR | Zbl
[23] V. A. Lunts, D. O. Orlov, “Uniqueness of enhancement for triangulated categories”, J. Amer. Math. Soc., 23:3 (2010), 853–908 | DOI | MR | Zbl
[24] M. Nagata, “A generalization of the imbedding problem of an abstract variety in a complete variety”, J. Math. Kyoto Univ., 3 (1963), 89–102 | DOI | MR | Zbl
[25] A. Neeman, “The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel”, Ann. Sci. École Norm. Sup. (4), 25:5 (1992), 547–566 | DOI | MR | Zbl
[26] A. Neeman, “The Grothendieck duality theorem via Bousfield's techniques and Brown representability”, J. Amer. Math. Soc., 9:1 (1996), 205–236 | DOI | MR | Zbl
[27] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl
[28] D. Pauksztello, “Homological epimorphisms of differential graded algebras”, Comm. Algebra, 37:7 (2009), 2337–2350 | DOI | MR | Zbl
[29] L. Positselski, Homological algebra of semimodules and semicontramodules. Semi-infinite homological algebra of associative algebraic structures, IMPAN Monogr. Mat. (N. S.), 70, Birkhäuser/Springer Basel AG, Basel, 2010, xxiv+349 pp. | DOI | MR | Zbl
[30] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc., 212, No 996, Amer. Math. Soc., Providence, RI, 2011, vi+133 pp. | DOI | MR | Zbl
[31] L. Positselski, Contraherent cosheaves, 2017 (v1 – 2012), 257 pp., arXiv: 1209.2995
[32] D. C. Ravenel, “Localization with respect to certain periodic homology theories”, Amer. J. Math., 106:2 (1984), 351–414 | DOI | MR | Zbl
[33] R. Rouquier, “Dimensions of triangulated categories”, J. K-Theory, 1:2 (2008), 193–256 | DOI | MR | Zbl
[34] G. Tabuada, “Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories”, C. R. Acad. Sci. Paris Ser. I Math., 340:1 (2005), 15–19 | DOI | MR | Zbl
[35] G. N. Tabuada, Théorie homotopique des DG-catégories, PhD thesis, Univ. Paris Diderot – Paris 7, Paris, 2007, 178 pp., arXiv: 0710.4303
[36] B. Toën, M. Vaquié, “Moduli of objects in dg-categories”, Ann. Sci. École Norm. Sup. (4), 40:3 (2007), 387–444 | DOI | MR | Zbl
[37] C. T. C. Wall, “Finiteness conditions for CW-complexes”, Ann. of Math. (2), 81:1 (1965), 56–69 | DOI | MR | Zbl
[38] J. H. C. Whitehead, “Combinatorial homotopy. I”, Bull. Amer. Math. Soc., 55 (1949), 213–245 | DOI | MR | Zbl
[39] J. H. C. Whitehead, “A certain exact sequence”, Ann. of Math. (2), 52 (1950), 51–110 | DOI | MR | Zbl