On the homotopy finiteness of DG categories
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 431-460

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a short overview of results related to homotopy finiteness of DG categories. A general plan is explained for proving homotopy finiteness of derived categories of coherent sheaves and coherent matrix factorizations on separated schemes of finite type over a field of characteristic zero. Bibliography: 39 titles.
Keywords: derived categories, differential graded categories, homotopy finiteness, Verdier localization, resolution of singularities.
@article{RM_2019_74_3_a2,
     author = {A. I. Efimov},
     title = {On the homotopy finiteness of {DG} categories},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {431--460},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/}
}
TY  - JOUR
AU  - A. I. Efimov
TI  - On the homotopy finiteness of DG categories
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 431
EP  - 460
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/
LA  - en
ID  - RM_2019_74_3_a2
ER  - 
%0 Journal Article
%A A. I. Efimov
%T On the homotopy finiteness of DG categories
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 431-460
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/
%G en
%F RM_2019_74_3_a2
A. I. Efimov. On the homotopy finiteness of DG categories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 431-460. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a2/