Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 373-386
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse scattering problem is considered for the two-dimensional Schrödinger equation at fixed positive energy. The results include inverse scattering reconstructions from the simplest scattering amplitudes. In particular, a complete analytic solution is given of the phased and phaseless inverse scattering problems for single-point potentials of Bethe–Peierls–Fermi–Zeldovich–Berezin–Faddeev type. Numerical inverse scattering reconstructions from the simplest scattering amplitudes are then studied using the method of the Riemann–Hilbert–Manakov problem in soliton theory. Finally, these numerical inverse scattering results are used to construct corresponding numerical solutions of the non-linear equations of the Novikov–Veselov hierarchy at fixed positive energy. Bibliography: 21 titles.
Keywords: inverse scattering, Schrödinger equation, numerical analysis, Novikov–Veselov equation.
@article{RM_2019_74_3_a0,
     author = {A. D. Agaltsov and R. G. Novikov},
     title = {Examples of solution of the inverse scattering problem and the equations of the {Novikov{\textendash}Veselov} hierarchy from the scattering data of point potentials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {373--386},
     year = {2019},
     volume = {74},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_3_a0/}
}
TY  - JOUR
AU  - A. D. Agaltsov
AU  - R. G. Novikov
TI  - Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 373
EP  - 386
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_3_a0/
LA  - en
ID  - RM_2019_74_3_a0
ER  - 
%0 Journal Article
%A A. D. Agaltsov
%A R. G. Novikov
%T Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 373-386
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2019_74_3_a0/
%G en
%F RM_2019_74_3_a0
A. D. Agaltsov; R. G. Novikov. Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 3, pp. 373-386. http://geodesic.mathdoc.fr/item/RM_2019_74_3_a0/

[1] R. G. Novikov, “The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator”, J. Funct. Anal., 103:2 (1992), 409–463 | DOI | MR | Zbl

[2] P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083 | DOI | DOI | MR | Zbl

[3] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions of multipoint potentials”, Eurasian J. Math. Computer Appl., 1:2 (2013), 76–91

[4] R. G. Novikov, “Inverse scattering without phase information”, Séminaire Laurent Schwartz – Équations aux dérivées partielles et applications. Année 2014–2015, Ed. Éc. Polytech., Palaiseau, 2016, Exp. No. XVI, 13 pp. | MR | Zbl

[5] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl

[6] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Soviet Math. Dokl., 30:3 (1984), 705–708 | MR | Zbl

[7] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl

[8] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl

[9] R. G. Novikov, “Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy”, Theoret. and Math. Phys., 66:2 (1986), 154–158 | DOI | MR | Zbl

[10] P. G. Grinevich, R. G. Novikov, “Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials”, Comm. Math. Phys., 174:2 (1995), 409–446 | DOI | MR | Zbl

[11] R. G. Novikov, “Approximate inverse quantum scattering at fixed energy in dimension 2”, Proc. Steklov Inst. Math., 225 (1999), 285–302 | MR | Zbl

[12] S. V. Manakov, “The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1-2 (1981), 420–427 | DOI | Zbl

[13] L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | DOI | MR | Zbl

[14] P. G. Grinevich, R. G. Novikov, “Analogues of multisoliton potentials for the two-dimensional Schrödinger operator, and a nonlocal Riemann problem”, Soviet Math. Dokl., 33 (1986), 9–12 | MR | Zbl

[15] V. A. Burov, N. V. Alekseenko, O. D. Rumyantseva, “Mnogochastotnoe obobschenie algoritma Novikova dlya resheniya obratnoi dvumernoi zadachi rasseivaniya”, Akustich. zhurn., 55:6 (2009), 784–798

[16] V. A. Burov, S. A. Morozov, “Svyaz mezhdu amplitudoi i fazoi signala, rasseyannogo ‘tochechnoi’ akusticheskoi neodnorodnostyu”, Akustich. zhurn., 47:6 (2001), 751–756

[17] N. R. Badalyan, V. A. Burov, S. A. Morozov, O. D. Rumyantseva, “Rasseyanie na akusticheskikh granichnykh rasseivatelyakh s malymi volnovymi razmerami i ikh vosstanovlenie”, Akustich. zhurn., 55:1 (2009), 3–10

[18] A. D. Agaltsov, R. G. Novikov, Simplest examples of inverse scattering on the plane at fixed energy, 2017, 14 pp. https://hal.archives-ouvertes.fr/hal-01570494v1

[19] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988, xiv+452 pp. | DOI | MR | MR | Zbl

[20] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106 | DOI | MR | Zbl

[21] R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian J. Math. Computer Appl., 6:1 (2018), 52–55 | DOI