Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2019_74_2_a6,
     author = {O. I. Mokhov and N. A. Strizhova},
     title = {Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {369--371},
     year = {2019},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/}
}
TY  - JOUR
AU  - O. I. Mokhov
AU  - N. A. Strizhova
TI  - Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 369
EP  - 371
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/
LA  - en
ID  - RM_2019_74_2_a6
ER  - 
%0 Journal Article
%A O. I. Mokhov
%A N. A. Strizhova
%T Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 369-371
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/
%G en
%F RM_2019_74_2_a6
O. I. Mokhov; N. A. Strizhova. Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/

[1] S. P. Novikov, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl

[2] O. I. Bogoyavlenskii, S. P. Novikov, Funkts. analiz i ego pril., 10:1 (1976), 9–13 | DOI | MR | Zbl

[3] O. I. Mokhov, UMN, 39:4(238) (1984), 173–174 | DOI | MR | Zbl

[4] O. I. Mokhov, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1345–1352 | DOI | MR | Zbl

[5] E. V. Ferapontov, C. A. P. Galvão, O. I. Mokhov, Y. Nutku, Comm. Math. Phys., 186:3 (1997), 649–669 | DOI | MR | Zbl

[6] B. Dubrovin, Integrable systems and quantum groups, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; Geometry of 2D topological field theories, Preprint SISSA-89/94/FM; 1994, 204 pp., arXiv: hep-th/9407018 | DOI | MR | Zbl

[7] O. Mokhov, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 121–151 | DOI | MR | Zbl

[8] O. I. Mokhov, UMN, 53:3(321) (1998), 85–192 | DOI | DOI | MR | Zbl

[9] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego pril., 30:3 (1996), 62–72 | DOI | DOI | MR | Zbl