Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2019_74_2_a6,
author = {O. I. Mokhov and N. A. Strizhova},
title = {Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {369--371},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/}
}
TY - JOUR AU - O. I. Mokhov AU - N. A. Strizhova TI - Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 369 EP - 371 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/ LA - en ID - RM_2019_74_2_a6 ER -
%0 Journal Article %A O. I. Mokhov %A N. A. Strizhova %T Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 369-371 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/ %G en %F RM_2019_74_2_a6
O. I. Mokhov; N. A. Strizhova. Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/