Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2019_74_2_a6,
     author = {O. I. Mokhov and N. A. Strizhova},
     title = {Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {369--371},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/}
}
TY  - JOUR
AU  - O. I. Mokhov
AU  - N. A. Strizhova
TI  - Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 369
EP  - 371
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/
LA  - en
ID  - RM_2019_74_2_a6
ER  - 
%0 Journal Article
%A O. I. Mokhov
%A N. A. Strizhova
%T Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 369-371
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/
%G en
%F RM_2019_74_2_a6
O. I. Mokhov; N. A. Strizhova. Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 369-371. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a6/