@article{RM_2019_74_2_a4,
author = {S. P. Suetin},
title = {Existence of a~three-sheeted {Nutall} surface for a certain class of infinite-valued analytic functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {363--365},
year = {2019},
volume = {74},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a4/}
}
TY - JOUR AU - S. P. Suetin TI - Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 363 EP - 365 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a4/ LA - en ID - RM_2019_74_2_a4 ER -
%0 Journal Article %A S. P. Suetin %T Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 363-365 %V 74 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a4/ %G en %F RM_2019_74_2_a4
S. P. Suetin. Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 363-365. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a4/
[1] A. I. Aptekarev, A. I. Bogolyubskii, M. L. Yattselev, Matem. sb., 208:3 (2017), 4–27 | DOI | DOI | MR | Zbl
[2] E. M. Chirka, Tr. MIAN, 301, 2018, 287–319 | DOI | DOI | MR | Zbl
[3] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, UMN, 72:4(436) (2017), 95–130 | DOI | DOI | MR | Zbl
[4] G. Lopes Lagomasino, V. Van Ashe, Matem. sb., 209:7 (2018), 106–138 | DOI | DOI | MR | Zbl
[5] J. Nuttall, J. Approx.Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[6] E. A. Rakhmanov, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[7] E. A. Rakhmanov, UMN, 73:3(441) (2018), 89–156 | DOI | DOI | MR | Zbl
[8] H. R. Stahl, Sets of minimal capacity and extremal domains, 2012, 112 pp., arXiv: 1205.3811
[9] S. P. Suetin, Matem. zametki, 101:5 (2017), 779–791 | DOI | DOI | MR | Zbl
[10] S. P. Suetin, Matem. zametki, 104:6 (2018), 918–929 | DOI | DOI | MR | Zbl