Trace formula for the magnetic Laplacian
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 325-361
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Guillemin–Uribe trace formula is a semiclassical version of the Selberg trace formula and the more general Duistermaat–Guillemin formula for elliptic operators on compact manifolds, which reflects the dynamics of magnetic geodesic flows in terms of eigenvalues of a natural differential operator (the magnetic Laplacian) associated with the magnetic field. This paper gives a survey of basic notions and results related to the Guillemin–Uribe trace formula and provides concrete examples of its computation for two-dimensional constant curvature surfaces with constant magnetic fields and for the Katok example. Bibliography: 53 titles.
Keywords: magnetic Laplacian, magnetic geodesics.
Mots-clés : trace formula
@article{RM_2019_74_2_a3,
     author = {Yu. A. Kordyukov and I. A. Taimanov},
     title = {Trace formula for the magnetic {Laplacian}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {325--361},
     year = {2019},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
AU  - I. A. Taimanov
TI  - Trace formula for the magnetic Laplacian
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 325
EP  - 361
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/
LA  - en
ID  - RM_2019_74_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%A I. A. Taimanov
%T Trace formula for the magnetic Laplacian
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 325-361
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/
%G en
%F RM_2019_74_2_a3
Yu. A. Kordyukov; I. A. Taimanov. Trace formula for the magnetic Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 325-361. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/

[1] A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere”, Adv. Nonlinear Stud., 17:1 (2017), 17–30 | DOI | MR | Zbl

[2] A. Abbondandolo, L. Macarini, M. Mazzucchelli, G. P. Paternain, “Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level”, J. Eur. Math. Soc. (JEMS), 19:2 (2017), 551–579 | DOI | MR | Zbl

[3] J. Bolte, F. Steiner, “Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field”, J. Phys. A, 24:16 (1991), 3817–3823 | DOI | MR | Zbl

[4] R. Bott, “On the iteration of closed geodesics and the Sturm intersection theory”, Comm. Pure Appl. Math., 9:2 (1956), 171–206 | DOI | MR | Zbl

[5] R. Brummelhuis, A. Uribe, “A semi-classical trace formula for Schrödinger operators”, Comm. Math. Phys., 136:3 (1991), 567–584 | DOI | MR | Zbl

[6] J. Brüning, R. V. Nekrasov, A. I. Shafarevich, “Quantization of periodic motions on compact surfaces of constant negative curvature in a magnetic field”, Math. Notes, 81:1 (2007), 28–36 | DOI | DOI | MR | Zbl

[7] K. Cieliebak, U. Frauenfelder, G. P. Paternain, “Symplectic topology of Mañé's critical values”, Geom. Topol., 14:3 (2010), 1765–1870 | DOI | MR | Zbl

[8] Y. Colin de Verdière, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable”, Duke Math. J., 46:1 (1979), 169–182 | DOI | MR | Zbl

[9] Y. Colin de Verdière, “Semiclassical trace formulas and heat expansions”, Anal. PDE, 5:3 (2012), 693–703 | DOI | MR | Zbl

[10] M. Combescure, J. Ralston, D. Robert, “A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition”, Comm. Math. Phys., 202:2 (1999), 463–480 | DOI | MR | Zbl

[11] A. Comtet, B. Georgeot, S. Ouvry, “Trace formula for Riemann surfaces with magnetic field”, Phys. Rev. Lett., 71:23 (1993), 3786–3789 | DOI

[12] A. Comtet, P. J. Houston, “Effective action on the hyperbolic plane in a constant external field”, J. Math. Phys., 26:1 (1985), 185–191 | DOI | MR

[13] G. Contreras, R. Iturriaga, G. P. Paternain, M. Paternain, “Lagrangian graphs, minimizing measures and Mañé's critical values”, Geom. Funct. Anal., 8:5 (1998), 788–809 | DOI | MR | Zbl

[14] G. Contreras, L. Macarini, G. P. Paternain, “Periodic orbits for exact magnetic flows on surfaces”, Int. Math. Res. Not., 2004:8 (2004), 361–387 | DOI | MR | Zbl

[15] C. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie invariantnykh izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 41–114

[16] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl

[17] J. Elstrodt, “Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I”, Math. Ann., 203:4 (1973), 295–330 ; “II”, Math. Z., 132:2 (1973), 99–134 ; “III”, Math. Ann., 208:2 (1974), 99–132 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] E. V. Ferapontov, A. P. Veselov, “Integrable Schrödinger operators with magnetic fields: factorization method on curved surfaces”, J. Math. Phys., 42:2 (2001), 590–607 | DOI | MR | Zbl

[19] V. L. Ginzburg, “On the existence and non-existence of closed trajectories for some Hamiltonian flows”, Math. Z., 223:3 (1996), 397–409 | DOI | MR | Zbl

[20] V. Guillemin, “Wave-trace invariants”, Duke Math. J., 83:2 (1996), 287–352 | DOI | MR | Zbl

[21] V. Guillemin, T. Paul, “Some remarks about semiclassical trace invariants and quantum normal forms”, Comm. Math. Phys., 294:1 (2010), 1–19 | DOI | MR | Zbl

[22] V. Guillemin, A. Uribe, “Clustering theorems with twisted spectra”, Math. Ann., 273:3 (1986), 479–506 | DOI | MR | Zbl

[23] V. Guillemin, A. Uribe, “Circular symmetry and the trace formula”, Invent. Math., 96:2 (1989), 385–423 | DOI | MR | Zbl

[24] V. Guillemin, A. Uribe, “Reduction and the trace formula”, J. Differential Geom., 32:2 (1990), 315–347 | DOI | MR | Zbl

[25] M. C. Gutzwiller, “Periodic orbits and classical quantization conditions”, J. Math. Phys., 12:3 (1971), 343–358 | DOI

[26] D. A. Hejhal, The Selberg trace formula for $\mathrm{PSL}(2,\mathbb R)$, v. I, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl

[27] B. Helffer, R. Purice, “Magnetic calculus and semiclassical trace formulas”, J. Phys. A, 43:47 (2010), 474028, 21 pp. | DOI | MR | Zbl

[28] P. Herbrich, Magnetic Schrödinger operators and Mañé's critical value, 2014, 46 pp., arXiv: 1410.8210

[29] A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems”, Math. USSR-Izv., 7:3 (1973), 535–571 | DOI | MR | Zbl

[30] R. Kuwabara, “On spectra of the Laplacian on vector bundles”, J. Math. Tokushima Univ., 16 (1982), 1–23 | MR | Zbl

[31] J. Marklof, “Selberg's trace formula: an introduction”, Hyperbolic geometry and applications in quantum chaos and cosmology, London Math. Soc. Lecture Note Ser., 397, Cambridge Univ. Press, Cambridge, 2012, 83–119 | DOI | MR | Zbl

[32] E. Meinrenken, “Semiclassical principal symbols and Gutzwiller's trace formula”, Rep. Math. Phys., 31:3 (1992), 279–295 | DOI | MR | Zbl

[33] E. Meinrenken, “Trace formulas and the Conley–Zehnder index”, J. Geom. Phys., 13:1 (1994), 1–15 | DOI | MR | Zbl

[34] S. P. Novikov, “Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers”, Soviet Math. Dokl., 23:2 (1981), 298–303 | MR | Zbl

[35] S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20 | DOI | MR | Zbl

[36] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[37] S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 | DOI | MR | Zbl

[38] S. P. Novikov, I. A. Taimanov, “Periodic extremals of many-valued or not-everywhere-positive functionals”, Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl

[39] T. Paul, A. Uribe, “The semi-classical trace formula and propagation of wave packets”, J. Funct. Anal., 132:1 (1995), 192–249 | DOI | MR | Zbl

[40] H.-B. Rademacher, “A sphere theorem for non-reversible Finsler metrics”, Math. Ann., 328:3 (2004), 373–387 | DOI | MR | Zbl

[41] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N. S.), 20 (1956), 47–87 | MR | Zbl

[42] Z. Shen, “Two-dimensional Finsler metrics with constant flag curvature”, Manuscripta Math., 109:3 (2002), 349–366 | DOI | MR | Zbl

[43] J. Sjöstrand, M. Zworski, “Quantum monodromy and semi-classical trace formulæ”, J. Math. Pures Appl. (9), 81:1 (2002), 1–33 | DOI | MR | Zbl

[44] I. A. Taimanov, “The principle of throwing out cycles in Morse–Novikov theory”, Soviet Math. Dokl., 27:1 (1983), 43–46 | MR | Zbl

[45] I. A. Taĭmanov, “Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals”, Math. USSR-Izv., 38:2 (1992), 359–374 | DOI | MR | Zbl

[46] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl

[47] I. A. Taĭmanov, “Closed nonself-intersecting extremals of multivalued functionals”, Sib. Math. J., 33:4 (1992), 686–692 | DOI | MR | Zbl

[48] A. Uribe, “Trace formulae”, First summer school in analysis and mathematical physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 61–90 | DOI | MR | Zbl

[49] A. B. Venkov, “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163 | MR | MR | Zbl | Zbl

[50] T. T. Wu, C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev. D (3), 12:12 (1975), 3845–3857 | DOI | MR

[51] T. T. Wu, C. N. Yang, “Dirac monopole without strings: monopole harmonics”, Nuclear Phys. B, 107:3 (1976), 365–380 | DOI | MR

[52] S. Zelditch, “Wave invariants at elliptic closed geodesics”, Geom. Funct. Anal., 7:1 (1997), 145–213 | DOI | MR | Zbl

[53] S. Zelditch, “Wave invariants for non-degenerate closed geodesics”, Geom. Funct. Anal., 8:1 (1998), 179–217 | DOI | MR | Zbl