Mots-clés : trace formula
@article{RM_2019_74_2_a3,
author = {Yu. A. Kordyukov and I. A. Taimanov},
title = {Trace formula for the magnetic {Laplacian}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {325--361},
year = {2019},
volume = {74},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/}
}
Yu. A. Kordyukov; I. A. Taimanov. Trace formula for the magnetic Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 325-361. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/
[1] A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere”, Adv. Nonlinear Stud., 17:1 (2017), 17–30 | DOI | MR | Zbl
[2] A. Abbondandolo, L. Macarini, M. Mazzucchelli, G. P. Paternain, “Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level”, J. Eur. Math. Soc. (JEMS), 19:2 (2017), 551–579 | DOI | MR | Zbl
[3] J. Bolte, F. Steiner, “Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field”, J. Phys. A, 24:16 (1991), 3817–3823 | DOI | MR | Zbl
[4] R. Bott, “On the iteration of closed geodesics and the Sturm intersection theory”, Comm. Pure Appl. Math., 9:2 (1956), 171–206 | DOI | MR | Zbl
[5] R. Brummelhuis, A. Uribe, “A semi-classical trace formula for Schrödinger operators”, Comm. Math. Phys., 136:3 (1991), 567–584 | DOI | MR | Zbl
[6] J. Brüning, R. V. Nekrasov, A. I. Shafarevich, “Quantization of periodic motions on compact surfaces of constant negative curvature in a magnetic field”, Math. Notes, 81:1 (2007), 28–36 | DOI | DOI | MR | Zbl
[7] K. Cieliebak, U. Frauenfelder, G. P. Paternain, “Symplectic topology of Mañé's critical values”, Geom. Topol., 14:3 (2010), 1765–1870 | DOI | MR | Zbl
[8] Y. Colin de Verdière, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable”, Duke Math. J., 46:1 (1979), 169–182 | DOI | MR | Zbl
[9] Y. Colin de Verdière, “Semiclassical trace formulas and heat expansions”, Anal. PDE, 5:3 (2012), 693–703 | DOI | MR | Zbl
[10] M. Combescure, J. Ralston, D. Robert, “A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition”, Comm. Math. Phys., 202:2 (1999), 463–480 | DOI | MR | Zbl
[11] A. Comtet, B. Georgeot, S. Ouvry, “Trace formula for Riemann surfaces with magnetic field”, Phys. Rev. Lett., 71:23 (1993), 3786–3789 | DOI
[12] A. Comtet, P. J. Houston, “Effective action on the hyperbolic plane in a constant external field”, J. Math. Phys., 26:1 (1985), 185–191 | DOI | MR
[13] G. Contreras, R. Iturriaga, G. P. Paternain, M. Paternain, “Lagrangian graphs, minimizing measures and Mañé's critical values”, Geom. Funct. Anal., 8:5 (1998), 788–809 | DOI | MR | Zbl
[14] G. Contreras, L. Macarini, G. P. Paternain, “Periodic orbits for exact magnetic flows on surfaces”, Int. Math. Res. Not., 2004:8 (2004), 361–387 | DOI | MR | Zbl
[15] C. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie invariantnykh izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 41–114
[16] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl
[17] J. Elstrodt, “Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I”, Math. Ann., 203:4 (1973), 295–330 ; “II”, Math. Z., 132:2 (1973), 99–134 ; “III”, Math. Ann., 208:2 (1974), 99–132 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[18] E. V. Ferapontov, A. P. Veselov, “Integrable Schrödinger operators with magnetic fields: factorization method on curved surfaces”, J. Math. Phys., 42:2 (2001), 590–607 | DOI | MR | Zbl
[19] V. L. Ginzburg, “On the existence and non-existence of closed trajectories for some Hamiltonian flows”, Math. Z., 223:3 (1996), 397–409 | DOI | MR | Zbl
[20] V. Guillemin, “Wave-trace invariants”, Duke Math. J., 83:2 (1996), 287–352 | DOI | MR | Zbl
[21] V. Guillemin, T. Paul, “Some remarks about semiclassical trace invariants and quantum normal forms”, Comm. Math. Phys., 294:1 (2010), 1–19 | DOI | MR | Zbl
[22] V. Guillemin, A. Uribe, “Clustering theorems with twisted spectra”, Math. Ann., 273:3 (1986), 479–506 | DOI | MR | Zbl
[23] V. Guillemin, A. Uribe, “Circular symmetry and the trace formula”, Invent. Math., 96:2 (1989), 385–423 | DOI | MR | Zbl
[24] V. Guillemin, A. Uribe, “Reduction and the trace formula”, J. Differential Geom., 32:2 (1990), 315–347 | DOI | MR | Zbl
[25] M. C. Gutzwiller, “Periodic orbits and classical quantization conditions”, J. Math. Phys., 12:3 (1971), 343–358 | DOI
[26] D. A. Hejhal, The Selberg trace formula for $\mathrm{PSL}(2,\mathbb R)$, v. I, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl
[27] B. Helffer, R. Purice, “Magnetic calculus and semiclassical trace formulas”, J. Phys. A, 43:47 (2010), 474028, 21 pp. | DOI | MR | Zbl
[28] P. Herbrich, Magnetic Schrödinger operators and Mañé's critical value, 2014, 46 pp., arXiv: 1410.8210
[29] A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems”, Math. USSR-Izv., 7:3 (1973), 535–571 | DOI | MR | Zbl
[30] R. Kuwabara, “On spectra of the Laplacian on vector bundles”, J. Math. Tokushima Univ., 16 (1982), 1–23 | MR | Zbl
[31] J. Marklof, “Selberg's trace formula: an introduction”, Hyperbolic geometry and applications in quantum chaos and cosmology, London Math. Soc. Lecture Note Ser., 397, Cambridge Univ. Press, Cambridge, 2012, 83–119 | DOI | MR | Zbl
[32] E. Meinrenken, “Semiclassical principal symbols and Gutzwiller's trace formula”, Rep. Math. Phys., 31:3 (1992), 279–295 | DOI | MR | Zbl
[33] E. Meinrenken, “Trace formulas and the Conley–Zehnder index”, J. Geom. Phys., 13:1 (1994), 1–15 | DOI | MR | Zbl
[34] S. P. Novikov, “Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers”, Soviet Math. Dokl., 23:2 (1981), 298–303 | MR | Zbl
[35] S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20 | DOI | MR | Zbl
[36] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[37] S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 | DOI | MR | Zbl
[38] S. P. Novikov, I. A. Taimanov, “Periodic extremals of many-valued or not-everywhere-positive functionals”, Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl
[39] T. Paul, A. Uribe, “The semi-classical trace formula and propagation of wave packets”, J. Funct. Anal., 132:1 (1995), 192–249 | DOI | MR | Zbl
[40] H.-B. Rademacher, “A sphere theorem for non-reversible Finsler metrics”, Math. Ann., 328:3 (2004), 373–387 | DOI | MR | Zbl
[41] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N. S.), 20 (1956), 47–87 | MR | Zbl
[42] Z. Shen, “Two-dimensional Finsler metrics with constant flag curvature”, Manuscripta Math., 109:3 (2002), 349–366 | DOI | MR | Zbl
[43] J. Sjöstrand, M. Zworski, “Quantum monodromy and semi-classical trace formulæ”, J. Math. Pures Appl. (9), 81:1 (2002), 1–33 | DOI | MR | Zbl
[44] I. A. Taimanov, “The principle of throwing out cycles in Morse–Novikov theory”, Soviet Math. Dokl., 27:1 (1983), 43–46 | MR | Zbl
[45] I. A. Taĭmanov, “Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals”, Math. USSR-Izv., 38:2 (1992), 359–374 | DOI | MR | Zbl
[46] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl
[47] I. A. Taĭmanov, “Closed nonself-intersecting extremals of multivalued functionals”, Sib. Math. J., 33:4 (1992), 686–692 | DOI | MR | Zbl
[48] A. Uribe, “Trace formulae”, First summer school in analysis and mathematical physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 61–90 | DOI | MR | Zbl
[49] A. B. Venkov, “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163 | MR | MR | Zbl | Zbl
[50] T. T. Wu, C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev. D (3), 12:12 (1975), 3845–3857 | DOI | MR
[51] T. T. Wu, C. N. Yang, “Dirac monopole without strings: monopole harmonics”, Nuclear Phys. B, 107:3 (1976), 365–380 | DOI | MR
[52] S. Zelditch, “Wave invariants at elliptic closed geodesics”, Geom. Funct. Anal., 7:1 (1997), 145–213 | DOI | MR | Zbl
[53] S. Zelditch, “Wave invariants for non-degenerate closed geodesics”, Geom. Funct. Anal., 8:1 (1998), 179–217 | DOI | MR | Zbl