Trace formula for the magnetic Laplacian
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 325-361

Voir la notice de l'article provenant de la source Math-Net.Ru

The Guillemin–Uribe trace formula is a semiclassical version of the Selberg trace formula and the more general Duistermaat–Guillemin formula for elliptic operators on compact manifolds, which reflects the dynamics of magnetic geodesic flows in terms of eigenvalues of a natural differential operator (the magnetic Laplacian) associated with the magnetic field. This paper gives a survey of basic notions and results related to the Guillemin–Uribe trace formula and provides concrete examples of its computation for two-dimensional constant curvature surfaces with constant magnetic fields and for the Katok example. Bibliography: 53 titles.
Keywords: magnetic Laplacian, magnetic geodesics.
Mots-clés : trace formula
@article{RM_2019_74_2_a3,
     author = {Yu. A. Kordyukov and I. A. Taimanov},
     title = {Trace formula for the magnetic {Laplacian}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {325--361},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
AU  - I. A. Taimanov
TI  - Trace formula for the magnetic Laplacian
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 325
EP  - 361
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/
LA  - en
ID  - RM_2019_74_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%A I. A. Taimanov
%T Trace formula for the magnetic Laplacian
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 325-361
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/
%G en
%F RM_2019_74_2_a3
Yu. A. Kordyukov; I. A. Taimanov. Trace formula for the magnetic Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 325-361. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a3/