@article{RM_2019_74_2_a2,
author = {S. Grushevsky and I. M. Krichever and Ch. Norton},
title = {Real-normalized differentials: limits on stable curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {265--324},
year = {2019},
volume = {74},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/}
}
TY - JOUR AU - S. Grushevsky AU - I. M. Krichever AU - Ch. Norton TI - Real-normalized differentials: limits on stable curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 265 EP - 324 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/ LA - en ID - RM_2019_74_2_a2 ER -
S. Grushevsky; I. M. Krichever; Ch. Norton. Real-normalized differentials: limits on stable curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 265-324. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/
[1] E. Arbarello, M. Cornalba, P. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp. | DOI | MR | Zbl
[2] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Moeller, “Compactification of strata of Abelian differentials”, Duke Math. J., 167:12 (2018), 2347–2416 | DOI | MR | Zbl
[3] L. Bers, “Spaces of degenerating Riemann surfaces”, Discontinuous groups and Riemann surfaces (Univ. Maryland, College Park, MD, 1973), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974, 43–55 | MR | Zbl
[4] D. Chen, “Degenerations of abelian differentials”, J. Differential Geom., 107:3 (2017), 395–453 | DOI | MR | Zbl
[5] G. Farkas, R. Pandharipande, “The moduli space of twisted canonical differentials”, J. Inst. Math. Jussieu, 17:3 (2018), 615–672 | DOI | MR | Zbl
[6] Q. Gendron, “The Deligne–Mumford and the incidence variety compactifications of the strata of $\Omega\mathcal{M}_g$”, Ann. Inst. Fourier (Grenoble), 68:3 (2018), 1169–1240 | DOI | MR | Zbl
[7] W. D. Gillam, Oriented real blowup, preprint, 21 pp., \par http://www.math.boun.edu.tr/instructors/wdgillam/manuscripts.html
[8] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Surveys in differential geometry, v. XIV, Surv. Differ. Geom., 14, Geometry of Riemann surfaces and their moduli spaces, Int. Press, Somerville, MA, 2009, 111–129 | DOI | MR | Zbl
[9] S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics. The Abel symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 123–137 | DOI | MR | Zbl
[10] S. Grushevsky, I. Krichever, Real-normalized differentials and cusps of plane curves, in preparation
[11] X. Hu, C. Norton, “General variational formulas for Abelian differentials”, Int. Math. Res. Notices, 2018, rny106, Publ. online ; 2018 (v1 – 2017), 40 pp., arXiv: 1705.05366 | DOI
[12] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl
[13] I. M. Krichever, “Method of averaging for two-dimensional ‘integrable’ equations”, Funct. Anal. Appl., 22:3 (1988), 200–213 | DOI | MR | Zbl
[14] I. M. Krichever, “Real normalized differentials and Arbarello's conjecture”, Funct. Anal. Appl., 46:2 (2012), 110–120 | DOI | DOI | MR | Zbl
[15] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowski space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl
[16] L. Lang, Harmonic tropical curves, 2015, 46 pp., arXiv: 1501.07121
[17] C. R. Norton, Limits of real-normalized differentials on stable curves, Ph.D. Thesis, Stony Brook Univ., 2014, 115 pp. | MR
[18] B. Osserman, “Limit linear series for curves not of compact type”, J. Reine Angew. Math., 2017, Publ. online ; 2014, 34 pp., arXiv: 1406.6699 | DOI
[19] Yu. L. Rodin, The Riemann boundary problem on Riemann surfaces, Math. Appl. (Soviet Ser.), 16, D. Reidel Publishing Co., Dordrecht, 1988, xiv+199 pp. | DOI | MR | Zbl
[20] M. Schiffer, D. C. Spencer, Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, NJ, 1954, x+451 pp. | MR | Zbl
[21] S. A. Wolpert, “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440 | DOI | MR | Zbl
[22] È. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl