Real-normalized differentials: limits on stable curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 265-324
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the behaviour of real-normalized (RN) meromorphic differentials on Riemann surfaces under degeneration. We describe all possible limits of RN differentials on any stable curve. In particular we prove that the residues at the nodes are solutions of a suitable Kirchhoff problem on the dual graph of the curve. We further show that the limits of zeros of RN differentials are the divisor of zeros of a twisted differential — an explicitly constructed collection of RN differentials on the irreducible components of the stable curve, with higher order poles at some nodes. Our main tool is a new method for constructing differentials (in this paper, RN differentials, but the method is more general) on smooth Riemann surfaces, in a plumbing neighbourhood of a given stable curve. To accomplish this, we think of a smooth Riemann surface as the complement of a neighbourhood of the nodes in a stable curve, with boundary circles identified pairwise. Constructing a differential on a smooth surface with prescribed singularities is then reduced to a construction of a suitable normalized holomorphic differential with prescribed ‘jumps’ (mismatches) along the identified circles (seams). We solve this additive analogue of the multiplicative Riemann–Hilbert problem in a new way, by using iteratively the Cauchy integration kernels on the irreducible components of the stable curve, instead of using the Cauchy kernel on the plumbed smooth surface. As the stable curve is fixed, this provides explicit estimates for the differential constructed, and allows a precise degeneration analysis. Bibliography: 22 titles.
Keywords: Riemann surfaces, Abelian differentials, boundary value problem, degenerations.
@article{RM_2019_74_2_a2,
     author = {S. Grushevsky and I. M. Krichever and Ch. Norton},
     title = {Real-normalized differentials: limits on stable curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {265--324},
     year = {2019},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/}
}
TY  - JOUR
AU  - S. Grushevsky
AU  - I. M. Krichever
AU  - Ch. Norton
TI  - Real-normalized differentials: limits on stable curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 265
EP  - 324
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/
LA  - en
ID  - RM_2019_74_2_a2
ER  - 
%0 Journal Article
%A S. Grushevsky
%A I. M. Krichever
%A Ch. Norton
%T Real-normalized differentials: limits on stable curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 265-324
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/
%G en
%F RM_2019_74_2_a2
S. Grushevsky; I. M. Krichever; Ch. Norton. Real-normalized differentials: limits on stable curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 265-324. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a2/

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp. | DOI | MR | Zbl

[2] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Moeller, “Compactification of strata of Abelian differentials”, Duke Math. J., 167:12 (2018), 2347–2416 | DOI | MR | Zbl

[3] L. Bers, “Spaces of degenerating Riemann surfaces”, Discontinuous groups and Riemann surfaces (Univ. Maryland, College Park, MD, 1973), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974, 43–55 | MR | Zbl

[4] D. Chen, “Degenerations of abelian differentials”, J. Differential Geom., 107:3 (2017), 395–453 | DOI | MR | Zbl

[5] G. Farkas, R. Pandharipande, “The moduli space of twisted canonical differentials”, J. Inst. Math. Jussieu, 17:3 (2018), 615–672 | DOI | MR | Zbl

[6] Q. Gendron, “The Deligne–Mumford and the incidence variety compactifications of the strata of $\Omega\mathcal{M}_g$”, Ann. Inst. Fourier (Grenoble), 68:3 (2018), 1169–1240 | DOI | MR | Zbl

[7] W. D. Gillam, Oriented real blowup, preprint, 21 pp., \par http://www.math.boun.edu.tr/instructors/wdgillam/manuscripts.html

[8] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Surveys in differential geometry, v. XIV, Surv. Differ. Geom., 14, Geometry of Riemann surfaces and their moduli spaces, Int. Press, Somerville, MA, 2009, 111–129 | DOI | MR | Zbl

[9] S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics. The Abel symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 123–137 | DOI | MR | Zbl

[10] S. Grushevsky, I. Krichever, Real-normalized differentials and cusps of plane curves, in preparation

[11] X. Hu, C. Norton, “General variational formulas for Abelian differentials”, Int. Math. Res. Notices, 2018, rny106, Publ. online ; 2018 (v1 – 2017), 40 pp., arXiv: 1705.05366 | DOI

[12] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl

[13] I. M. Krichever, “Method of averaging for two-dimensional ‘integrable’ equations”, Funct. Anal. Appl., 22:3 (1988), 200–213 | DOI | MR | Zbl

[14] I. M. Krichever, “Real normalized differentials and Arbarello's conjecture”, Funct. Anal. Appl., 46:2 (2012), 110–120 | DOI | DOI | MR | Zbl

[15] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowski space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl

[16] L. Lang, Harmonic tropical curves, 2015, 46 pp., arXiv: 1501.07121

[17] C. R. Norton, Limits of real-normalized differentials on stable curves, Ph.D. Thesis, Stony Brook Univ., 2014, 115 pp. | MR

[18] B. Osserman, “Limit linear series for curves not of compact type”, J. Reine Angew. Math., 2017, Publ. online ; 2014, 34 pp., arXiv: 1406.6699 | DOI

[19] Yu. L. Rodin, The Riemann boundary problem on Riemann surfaces, Math. Appl. (Soviet Ser.), 16, D. Reidel Publishing Co., Dordrecht, 1988, xiv+199 pp. | DOI | MR | Zbl

[20] M. Schiffer, D. C. Spencer, Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, NJ, 1954, x+451 pp. | MR | Zbl

[21] S. A. Wolpert, “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440 | DOI | MR | Zbl

[22] È. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl