The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 211-263
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The focusing non-linear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasimonochromatic waves in weakly non-linear media, and MI is considered to be the main physical mechanism for the appearance of anomalous (rogue) waves (AWs) in nature. In this paper the finite-gap method is used to study the NLS Cauchy problem for generic periodic initial perturbations of the unstable background solution of the NLS equation (here called the Cauchy problem of AWs) in the case of a finite number $N$ of unstable modes. It is shown how the finite-gap method adapts to this specific Cauchy problem through three basic simplifications enabling one to construct the solution, to leading and relevant order, in terms of elementary functions of the initial data. More precisely, it is shown that, to leading order, i) the initial data generate a partition of the time axis into a sequence of finite intervals, ii) in each interval $I$ of the partition only a subset of ${\mathscr N}(I)\leqslant N$ unstable modes are ‘visible’, and iii) for $t\in I$ the NLS solution is approximated by the ${\mathscr N}(I)$-soliton solution of Akhmediev type describing for these ‘visible’ unstable modes a non-linear interaction with parameters also expressed in terms of the initial data through elementary functions. This result explains the relevance of the $m$-soliton solutions of Akhmediev type with $m\leqslant N$ in the generic periodic Cauchy problem of AWs in the case of a finite number $N$ of unstable modes. Bibliography: 118 titles.
Keywords: focusing non-linear Schrödinger equation, periodic Cauchy problem for anomalous waves, asymptotics in terms of elementary functions, finite-gap approximation, Riemann surfaces close to degenerate ones.
@article{RM_2019_74_2_a1,
     author = {P. G. Grinevich and P. M. Santini},
     title = {The finite-gap method and the periodic {NLS} {Cauchy} problem of anomalous waves for a finite number of unstable modes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--263},
     year = {2019},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - P. M. Santini
TI  - The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 211
EP  - 263
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a1/
LA  - en
ID  - RM_2019_74_2_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A P. M. Santini
%T The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 211-263
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a1/
%G en
%F RM_2019_74_2_a1
P. G. Grinevich; P. M. Santini. The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 211-263. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a1/

[1] M. J. Ablowitz, J. Hammack, D. Henderson, C. M. Schober, “Long-time dynamics of the modulational instability of deep water waves”, Phys. D, 152/153 (2001), 416–433 | DOI | MR | Zbl

[2] M. J. Ablowitz, B. M. Herbst, “On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation”, SIAM J. Appl. Math., 50:2 (1990), 339–351 | DOI | MR | Zbl

[3] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl

[4] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl

[5] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105 | DOI

[6] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E (3), 90:3 (2014), 032912 | DOI

[7] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR | Zbl

[8] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR | Zbl

[9] M. J. Ablowitz, C. Schober, B. M. Herbst, “Numerical chaos, roundoff errors and homoclinic manifolds”, Phys. Rev. Lett., 71:17 (1993), 2683–2686 | DOI

[10] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1981, x+425 pp. | MR | MR | Zbl | Zbl

[11] D. S. Agafontsev, V. E. Zakharov, “Integrable turbulence and formation of rogue waves”, Nonlinearity, 28:8 (2015), 2791–2821 | DOI | MR | Zbl

[12] G. P. Agrawal, Nonlinear fiber optics, 3rd ed., Academic Press, San Diego, CA, 2001, 467 pp.

[13] N. N. Akhmediev, “Nonlinear physics: Déjà vu in optics”, Nature, 413:6853 (2001), 267–268 | DOI

[14] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions”, Soviet Phys. JETP, 62:5 (1985), 894–899

[15] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation”, Theoret. and Math. Phys., 72:2 (1987), 809–818 | DOI | MR | Zbl

[16] N. N. Akhmediev, V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 69:2 (1986), 1089–1093 | DOI | MR | Zbl

[17] A. Ankiewicz, N. Akhmediev, J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations”, Phys. Rev. E (3), 82:2 (2010), 026602, 7 pp. | DOI | MR

[18] M. V. Babich, A. I. Bobenko, V. B. Matveev, “Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves”, Math. USSR-Izv., 26:3 (1986), 479–496 | DOI | MR | Zbl

[19] F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves”, Phys. Rev. Lett., 109:4 (2012), 044102 | DOI

[20] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994, xii+337 pp. | Zbl

[21] T. B. Benjamin, J. E. Feir, “The disintegration of wave trains on deep water. Part I. Theory”, J. Fluid Mech., 27:3 (1967), 417–430 | DOI

[22] M. Bertola, G. A. El, A. Tovbis, “Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472:2194 (2016), 20160340, 12 pp. | DOI | MR | Zbl

[23] M. Bertola, A. Tovbis, “Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I”, Comm. Pure Appl. Math., 66:5 (2013), 678–752 | DOI | MR | Zbl

[24] V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids”, JETP Letters, 3:12 (1966), 307–310

[25] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR | Zbl

[26] G. Biondini, S. Li, D. Mantzavinos, “Oscillation structure of localized perturbations in modulationally unstable media”, Phys. Rev. E, 94:6 (2016), 060201(R) | DOI

[27] Yu. V. Bludov, V. V. Konotop, N. Akhmediev, “Matter rogue waves”, Phys. Rev. A, 80:3 (2009), 033610 | DOI

[28] U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, S. Residori, “Spatiotemporal pulses in a liquid crystal optical oscillator”, Phys. Rev. Lett., 99:2 (2007), 023901 | DOI

[29] A. Calini, N. M. Ercolani, D. W. McLaughlin, C. M. Schober, “Mel'nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation”, Phys. D, 89:3-4 (1996), 227–260 | DOI | MR | Zbl

[30] A. Calini, C. M. Schober, “Homoclinic chaos increases the likelihood of rogue wave formation”, Phys. Lett. A, 298:5-6 (2002), 335–349 | DOI | MR | Zbl

[31] A. Calini, C. M. Schober, “Dynamical criteria for rogue waves in nonlinear Schrödinger models”, Nonlinearity, 25:12 (2012), R99–R116 | DOI | MR | Zbl

[32] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502 | DOI

[33] I. V. Cherednik, “Reality conditions in ‘finite-zone integration’”, Soviet Phys. Dokl., 25:6 (1980), 450–452 | MR | Zbl

[34] F. Coppini, P. M. Santini, The periodic Cauchy problem of anomalous waves for the Ablowitz–Ladik model, and the exact recurrence of rogue waves, preprint, 2018

[35] A. Degasperis, S. Lombardo, “Integrability in action: solitons, instability and rogue waves”, Rogue and shock waves in nonlinear dispersive waves, Lecture Notes in Phys., 926, Springer, Cham, 2016, 23–53 | DOI

[36] A. Degasperis, S. Lombardo, M. Sommacal, “Integrability and linear stability of nonlinear waves”, J. Nonlinear Sci., 28:4 (2018), 1251–1291 | DOI | MR | Zbl

[37] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl

[38] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–258 | DOI

[39] B. A. Dubrovin, “Inverse problem for periodic finite-zoned potentials in the theory of scattering”, Funct. Anal. Appl., 9:1 (1975), 61–62 | DOI | MR | Zbl

[40] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl

[41] K. B. Dysthe, K. Trulsen, “Note on breather type solutions of the NLS as models for freak-waves”, Phys. Scripta, T82:1 (1999), 48–52 | DOI

[42] G. A. El, E. G. Khamis, A. Tovbis, “Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves”, Nonlinearity, 29:9 (2016), 2798–2836 | DOI | MR | Zbl

[43] N. Ercolani, M. G. Forest, D. W. McLaughlin, “Geometry of the modulational instability. III. Homoclinic orbits for the periodic sine-Gordon equation”, Phys. D, 43:2-3 (1990), 349–384 | DOI | MR | Zbl

[44] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics Math., 2nd ed., Springer, Berlin, 2007, x+592 pp. | DOI | MR | MR | Zbl | Zbl

[45] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp. | DOI | MR | Zbl

[46] M. G. Forest, J. E. Lee, “Geometry and modulation theory for the periodic nonlinear Schrödinger equation”, Oscillation theory, computation, and methods of compensated compactness (Minneapolis, MN, 1985), IMA Vol. Math. Appl., 2, Springer, New York, 1986, 35–69 | DOI | MR | Zbl

[47] G. Gallavotti (ed.), The Fermi–Pasta–Ulam problem. A status report, Lecture Notes in Phys., 728, Springer, Berlin, 2008, viii+301 pp. | DOI | MR | Zbl

[48] A. A. Gelash, “Formation of rogue waves from a locally perturbed condensate”, Phys. Rev. E, 97 (2018), 022208 | DOI

[49] A. A. Gelash, D. S. Agafontsev, “Strongly interacting soliton gas and formation of rogue waves”, Phys. Rev. E, 98 (2018), 042210 | DOI

[50] A. A. Gelash, V. E. Zakharov, “Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability”, Nonlinearity, 27:4 (2014), R1–R39 | DOI | MR | Zbl

[51] R. H. J. Grimshaw, A. Tovbis, “Rogue waves: analytical predictions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469:2157 (2013), 20130094, 10 pp. | DOI

[52] P. G. Grinevich, P. M. Santini, “The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1”, Nonlinearity, 31:11 (2018), 5258–5308 | DOI | MR

[53] P. G. Grinevich, P. M. Santini, “The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes”, Phys. Lett. A, 382:14 (2018), 973–979 | DOI | MR | Zbl

[54] P. G. Grinevich, P. M. Santini, “Phase resonances of the NLS rogue wave recurrence in the quasi-symmetric case”, Theoret. and Math. Phys., 196:3 (2018), 1294–1306 | DOI | DOI | MR | Zbl

[55] P. G. Grinevich, P. M. Santini, “Numerical instability of the Akhmediev breather and a finite-gap model of it”, Recent developments in integrable systems and related topics of mathematical physics (Kezenoi-Am, Russia, 2016), Springer Proc. Math. Stat., 273, Springer, Berlin, 2018, 3–23 ; 2017, 27 pp., arXiv: 1708.00762 | DOI

[56] P. G. Grinevich, M. U. Schmidt, “Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations”, Phys. D, 87:1-4 (1995), 73–98 | DOI | MR | Zbl

[57] K. L. Henderson, D. H. Peregrine, J. W. Dold, “Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation”, Wave Motion, 29:4 (1999), 341–361 | DOI | MR | Zbl

[58] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1994 | DOI | Zbl

[59] R. Hirota, “Direct method of finding exact solutions of nonlinear evolution equations”, Bäcklund transformations, the inverse scattering method, solitons, and their applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, TN, 1974), Lecture Notes in Math., 515, Springer, Berlin, 1976, 40–68 | DOI | MR | Zbl

[60] H. Hochstadt, “Estimates on the stability intervals for Hill's equation”, Proc. Amer. Math. Soc., 14:6 (1963), 930–932 | DOI | MR | Zbl

[61] A. R. Its, V. P. Kotlyarov, “Yavnye formuly dlya resheniya nelineinogo uravneniya Shredingera”, Dokl. AN USSR Ser. A, 1976, no. 11, 965–968 | MR | Zbl

[62] A. R. Its, V. B. Matveev, “Hill's operator with finitely many gaps”, Funct. Anal. Appl., 9:1 (1975), 65–66 | DOI | MR | Zbl

[63] A. R. Its, A. V. Rybin, M. A. Sall, “Exact integration of nonlinear Schrödinger equation”, Theoret. and Math. Phys., 74:1 (1988), 20–32 | DOI | MR | Zbl

[64] J. Javanainen, J. Ruostekoski, “Symbolic calculation in development of algorithms: split-step methods for the Gross–Pitaevskii equation”, J. Phys. A, 39:12 (2006), L179–L184 ; Split-step Fourier methods for the Gross–Pitaevskii equation, 2004, 3 pp., arXiv: cond-mat/0411154 | DOI | MR | Zbl

[65] T. Kawata, H. Inoue, “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions”, J. Phys. Soc. Japan, 44:5 (1978), 1722–1729 | DOI | MR | Zbl

[66] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits”, Phys. Rew. E, 85:6 (2012), 066601 | DOI

[67] C. Kharif, E. Pelinovsky, T. Talipova, A. Slunyaev, “Focusing of nonlinear wave groups in deep water”, Pisma v ZhETF, 73:4 (2001), 190–195

[68] C. Kharif, E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon”, Eur. J. Mech. B/Fluids, 22:6 (2003), 603–634 | DOI | MR | Zbl

[69] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Physics, 6:10 (2010), 790–795 | DOI

[70] O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif, M. Onorato, E. J. R. Kelleher, B. Kibler, N. Akhmediev, A. Chabchoub, “Modulation instability and phase-shifted Fermi–Pasta–Ulam recurrence”, Sci. Rep., 6 (2016), 28516, 9 pp. | DOI

[71] W. Kohn, “Analytic properties of Bloch waves and Wannier functions”, Phys. Rev. (2), 115:4 (1959), 809–821 | DOI | MR | Zbl

[72] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[73] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl

[74] I. M. Krichever, “Perturbation theory in periodic problems for two-dimensional integrable systems”, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 9:2 (1992), 1–103 | Zbl

[75] E. A. Kuznetsov, “Solitons in a parametrically unstable plasma”, Soviet Phys. Dokl., 22 (1977), 507–508

[76] E. A. Kuznetsov, “Fermi–Pasta–Ulam recurrence and modulation instability”, Pisma v ZhETF, 105:2 (2017), 108–109 | DOI

[77] B. M. Lake, H. C. Yuen, H. Rungaldier, W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train”, J. Fluid Mech., 83:1 (1977), 49–74 | DOI

[78] P. D. Lax, “Periodic solutions of the KdV equations”, Nonlinear wave motion (Clarkson Coll. Tech., Potsdam, NY, 1972), Lectures in Appl. Math., 15, Amer. Math. Soc., Providence, RI., 1974, 85–96 | MR | Zbl

[79] Y. C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation”, Stud. Appl. Math., 60:1 (1979), 43–58 | DOI | MR | Zbl

[80] V. A. Marčenko, I. V. Ostrovskii, “A characterization of the spectrum of Hill's operator”, Math. USSR-Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl

[81] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, x+120 pp. | MR | Zbl

[82] H. P. McKean, P. van Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl

[83] D. Mumford, Tata lectures on theta, v. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 pp. | DOI | MR | Zbl

[84] A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser, S. Trillo, “Fibre multiwave-mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence”, Nature Photonics, 12:5 (2018), 303–308 | DOI

[85] K. Narita, “Soliton solutions for discrete Hirota equation. II”, J. Phys. Soc. Japan, 60:5 (1991), 1497–1500 | DOI | MR

[86] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[87] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep., 528:2 (2013), 47–89 | DOI | MR

[88] A. R. Osborne, M. Onorato, M. Serio, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains”, Phys. Lett. A, 275:5-6 (2000), 386–393 | DOI | MR | Zbl

[89] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl

[90] D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, E. DelRe, “Spatial rogue waves in photorefractive ferroelectrics”, Phys. Rev. Lett., 115:9 (2015), 093901 | DOI

[91] D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. J. Agranat, P. G. Grinevich, P. M. Santini, C. Conti, E. DelRe, “Observation of Fermi–Pasta–Ulam–Tsingou recurrence and its exact dynamics”, Phys. Rev. X, 8:4 (2018), 041017, 9 pp. | DOI

[92] L. Pitaevskii, S. Stringari, Bose–Einstein condensation, Internat. Ser. Monogr. Phys., 116, The Clarendon Press, Oxford Univ. Press, Oxford, 2003, x+382 pp. | MR | Zbl

[93] E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation”, Duke Math. J., 52:2 (1985), 329–377 | DOI | MR | Zbl

[94] L. Salasnich, A. Parola, L. Reatto, “Modulational instability and complex dynamics of confined matter-wave solitons”, Phys. Rev. Lett., 91:8 (2003), 080405 | DOI

[95] P. M. Santini, “The periodic Cauchy problem for PT-symmetric NLS. I: The first appearance of rogue waves, regular behavior or blow up at finite times”, J. Phys. A, 51:49 (2018), 495207, 21 pp. | DOI

[96] P. M. Santini, Darboux-dressing and symmetry construction of classes of regular and singular solutions of the NLS and the PT-symmetric NLS equations over the constant background, preprint, 2018

[97] A. O. Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves”, Theoret. and Math. Phys., 173:1 (2012), 1403–1416 | DOI | DOI | MR | Zbl

[98] D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI

[99] G. Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, MA, 1957, viii+307 pp. | MR | MR | Zbl | Zbl

[100] G. G. Stokes, “On the theory of oscillatory waves”, Trans. Cambridge Philos. Soc., 8 (1847), 441–455; G. G. Stokes, Mathematical and physical papers, v. 1, Cambridge Univ. Press, Cambridge, 1880, 197–229 ; G. G. Stokes, Supplement to a paper on the theory of oscillatory waves, Mathematical and physical papers, v. 1, 314–326 | DOI | DOI

[101] C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999, xvi+350 pp. | MR | Zbl

[102] T. R. Taha, X. Xu, “Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations”, J. Supercomput., 32:1 (2005), 5–23 | DOI

[103] T. Taniuti, H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma”, Phys. Rev. Lett., 21:4 (1968), 209–212 | DOI

[104] A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, S. Randoux, G. Genty, P. Suret, J. M. Dudley, “Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation”, Phys. Rev. Lett., 119:3 (2017), 033901 | DOI

[105] E. R. Tracy, H. H. Chen, “Nonlinear self-modulation: an exactly solvable model”, Phys. Rev. A (3), 37:3 (1988), 815–839 | DOI | MR

[106] M. P. Tulin, T. Waseda, “Laboratory observation of wave group evolution, including breaking effects”, J. Fluid Mech., 378:1 (1999), 197–232 | DOI

[107] G. Van Simaeys, P. Emplit, M. Haelterman, “Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave”, Phys. Rev. Lett., 87:3 (2001), 033902 | DOI

[108] J. A. C. Weideman, B. M. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation”, SIAM J. Numer. Anal., 23:3 (1986), 485–507 | DOI | MR | Zbl

[109] H. C. Yuen, W. E. Ferguson, Jr., “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation”, Phys. Fluids, 21 (1978), 1275–1278 | DOI

[110] H. C. Yuen, B. M. Lake, “Nonlinear dynamics of deep-water gravity waves”, Adv. in Appl. Mech., 22 (1982), 67–229 | DOI | MR | Zbl

[111] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI

[112] V. E. Zakharov, A. A. Gelash, Soliton on unstable condensate, 2011, 4 pp., arXiv: 1109.0620v2

[113] V. E. Zakharov, A. A. Gelash, “Nonlinear stage of modulation instability”, Phys. Rev. Lett., 111:5 (2013), 054101 | DOI

[114] V. E. Zakharov, S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19:2 (1985), 89–101 | DOI | MR | Zbl

[115] V. E. Zakharov, A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Soviet Phys. JETP, 47:6 (1978), 1017–1027 | MR

[116] V. E. Zakharov, L. A. Ostrovsky, “Modulation instability: the beginning”, Phys. D, 238:5 (2009), 540–548 | DOI | MR | Zbl

[117] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Phys. JETP, 34:1 (1972), 62–69 | MR

[118] V. E. Zakharov, A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8:3 (1974), 226–235 | DOI | MR | Zbl