@article{RM_2019_74_2_a0,
author = {M. Bialy and A. E. Mironov},
title = {Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {187--209},
year = {2019},
volume = {74},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/}
}
TY - JOUR AU - M. Bialy AU - A. E. Mironov TI - Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 187 EP - 209 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/ LA - en ID - RM_2019_74_2_a0 ER -
%0 Journal Article %A M. Bialy %A A. E. Mironov %T Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 187-209 %V 74 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/ %G en %F RM_2019_74_2_a0
M. Bialy; A. E. Mironov. Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/
[1] P. Albers, G. D. Banhatti, M. Herrmann, Numerical simulations of magnetic billiards in a convex domain in ${\mathbb R}^2$, 2017, 10 pp., arXiv: 1702.06309
[2] A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558 | DOI | MR | Zbl
[3] N. Berglund, H. Kunz, “Integrability and ergodicity of classical billiards in a magnetic field”, J. Statist. Phys., 83:1-2 (1996), 81–126 | DOI | MR | Zbl
[4] M. Bialy, “On totally integrable magnetic billiards on constant curvature surface”, Electron. Res. Announc. Math. Sci., 19 (2012), 112–119 | DOI | MR | Zbl
[5] M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl
[6] M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32 | DOI | DOI | MR | Zbl
[7] M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126 | DOI | MR | Zbl
[8] M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156 | DOI | MR | Zbl
[9] M. Bialy, A. E. Mironov, “A survey on polynomial in momenta integrals for billiard problems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170418, 19 pp. | DOI | MR
[10] S. V. Bolotin, “Integrable Birkhoff billiards”, Moscow Univ. Mech. Bull., 45:2 (1990), 10–13 | MR | Zbl
[11] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl
[12] A. Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. Eur. Math. Soc. (JEMS) (to appear); 2019 (v1 – 2017), 68 pp., arXiv: 1706.04030
[13] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | Zbl
[14] B. Gutkin, “Hyperbolic magnetic billiards on surfaces of constant curvature”, Comm. Math. Phys., 217:1 (2001), 33–53 | DOI | MR | Zbl
[15] E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301 | DOI | MR | Zbl
[16] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl
[17] V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380 | DOI | MR | Zbl
[18] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl
[19] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl
[20] M. Robnik, M. V. Berry, “Classical billiards in magnetic fields”, J. Phys. A, 18:9 (1985), 1361–1378 | DOI | MR | Zbl
[21] V. Schastnyy, D. Treschev, “On local integrability in billiard dynamics”, Exp. Math. (to appear) , publ. online 2017 | DOI
[22] S. Tabachnikov, “Dual billiards”, Russian Math. Surveys, 48:6 (1993), 81–109 | DOI | MR | Zbl
[23] S. Tabachnikov, Billiards, Panor. Synth., 1, Soc. Math. France, Paris, 1995, vi+142 pp. | MR | Zbl
[24] S. Tabachnikov, “Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem”, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, 233–250 | MR | Zbl
[25] S. Tabachnikov, “On algebraically integrable outer billiards”, Pacific J. Math., 235:1 (2008), 89–92 | DOI | MR | Zbl
[26] D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl
[27] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI | MR | Zbl
[28] D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284 | DOI | MR | Zbl
[29] A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107 | DOI | MR | Zbl
[30] B. L. van der Waerden, Einführung in die algebraische Geometrie, Grundlehren Math. Wiss., 51, Springer, Berlin, 1939, vii+247 pp. | MR | Zbl