Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209
Voir la notice de l'article provenant de la source Math-Net.Ru
Magnetic billiards in a convex domain with smooth boundary on a constant-curvature surface in a constant magnetic field is considered in this paper. The question of the existence of an integral of motion which is a polynomial in the components of the velocity is investigated. It is shown that if such an integral exists, then the boundary of the domain defines a non-singular algebraic curve in $\mathbb{C}^3$. It is also shown that for a domain other than a geodesic disk, magnetic billiards does not admit a polynomial integral for all but perhaps finitely many values of the magnitude of the magnetic field. To prove our main theorems a new dynamical system, ‘outer magnetic billiards’, on a constant-curvature surface is introduced, a system ‘dual’ to magnetic billiards. By passing to this dynamical system one can apply methods of algebraic geometry to magnetic billiards.
Bibliography: 30 titles.
Keywords:
magnetic billiards, constant-curvature surfaces, polynomial integrals.
@article{RM_2019_74_2_a0,
author = {M. Bialy and A. E. Mironov},
title = {Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {187--209},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/}
}
TY - JOUR AU - M. Bialy AU - A. E. Mironov TI - Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 187 EP - 209 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/ LA - en ID - RM_2019_74_2_a0 ER -
%0 Journal Article %A M. Bialy %A A. E. Mironov %T Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 187-209 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/ %G en %F RM_2019_74_2_a0
M. Bialy; A. E. Mironov. Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/