Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Magnetic billiards in a convex domain with smooth boundary on a constant-curvature surface in a constant magnetic field is considered in this paper. The question of the existence of an integral of motion which is a polynomial in the components of the velocity is investigated. It is shown that if such an integral exists, then the boundary of the domain defines a non-singular algebraic curve in $\mathbb{C}^3$. It is also shown that for a domain other than a geodesic disk, magnetic billiards does not admit a polynomial integral for all but perhaps finitely many values of the magnitude of the magnetic field. To prove our main theorems a new dynamical system, ‘outer magnetic billiards’, on a constant-curvature surface is introduced, a system ‘dual’ to magnetic billiards. By passing to this dynamical system one can apply methods of algebraic geometry to magnetic billiards. Bibliography: 30 titles.
Keywords: magnetic billiards, constant-curvature surfaces, polynomial integrals.
@article{RM_2019_74_2_a0,
     author = {M. Bialy and A. E. Mironov},
     title = {Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {187--209},
     year = {2019},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/}
}
TY  - JOUR
AU  - M. Bialy
AU  - A. E. Mironov
TI  - Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 187
EP  - 209
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/
LA  - en
ID  - RM_2019_74_2_a0
ER  - 
%0 Journal Article
%A M. Bialy
%A A. E. Mironov
%T Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 187-209
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/
%G en
%F RM_2019_74_2_a0
M. Bialy; A. E. Mironov. Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/

[1] P. Albers, G. D. Banhatti, M. Herrmann, Numerical simulations of magnetic billiards in a convex domain in ${\mathbb R}^2$, 2017, 10 pp., arXiv: 1702.06309

[2] A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558 | DOI | MR | Zbl

[3] N. Berglund, H. Kunz, “Integrability and ergodicity of classical billiards in a magnetic field”, J. Statist. Phys., 83:1-2 (1996), 81–126 | DOI | MR | Zbl

[4] M. Bialy, “On totally integrable magnetic billiards on constant curvature surface”, Electron. Res. Announc. Math. Sci., 19 (2012), 112–119 | DOI | MR | Zbl

[5] M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl

[6] M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32 | DOI | DOI | MR | Zbl

[7] M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126 | DOI | MR | Zbl

[8] M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156 | DOI | MR | Zbl

[9] M. Bialy, A. E. Mironov, “A survey on polynomial in momenta integrals for billiard problems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170418, 19 pp. | DOI | MR

[10] S. V. Bolotin, “Integrable Birkhoff billiards”, Moscow Univ. Mech. Bull., 45:2 (1990), 10–13 | MR | Zbl

[11] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl

[12] A. Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. Eur. Math. Soc. (JEMS) (to appear); 2019 (v1 – 2017), 68 pp., arXiv: 1706.04030

[13] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | Zbl

[14] B. Gutkin, “Hyperbolic magnetic billiards on surfaces of constant curvature”, Comm. Math. Phys., 217:1 (2001), 33–53 | DOI | MR | Zbl

[15] E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301 | DOI | MR | Zbl

[16] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[17] V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380 | DOI | MR | Zbl

[18] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl

[19] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl

[20] M. Robnik, M. V. Berry, “Classical billiards in magnetic fields”, J. Phys. A, 18:9 (1985), 1361–1378 | DOI | MR | Zbl

[21] V. Schastnyy, D. Treschev, “On local integrability in billiard dynamics”, Exp. Math. (to appear) , publ. online 2017 | DOI

[22] S. Tabachnikov, “Dual billiards”, Russian Math. Surveys, 48:6 (1993), 81–109 | DOI | MR | Zbl

[23] S. Tabachnikov, Billiards, Panor. Synth., 1, Soc. Math. France, Paris, 1995, vi+142 pp. | MR | Zbl

[24] S. Tabachnikov, “Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem”, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, 233–250 | MR | Zbl

[25] S. Tabachnikov, “On algebraically integrable outer billiards”, Pacific J. Math., 235:1 (2008), 89–92 | DOI | MR | Zbl

[26] D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl

[27] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI | MR | Zbl

[28] D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284 | DOI | MR | Zbl

[29] A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107 | DOI | MR | Zbl

[30] B. L. van der Waerden, Einführung in die algebraische Geometrie, Grundlehren Math. Wiss., 51, Springer, Berlin, 1939, vii+247 pp. | MR | Zbl