Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209

Voir la notice de l'article provenant de la source Math-Net.Ru

Magnetic billiards in a convex domain with smooth boundary on a constant-curvature surface in a constant magnetic field is considered in this paper. The question of the existence of an integral of motion which is a polynomial in the components of the velocity is investigated. It is shown that if such an integral exists, then the boundary of the domain defines a non-singular algebraic curve in $\mathbb{C}^3$. It is also shown that for a domain other than a geodesic disk, magnetic billiards does not admit a polynomial integral for all but perhaps finitely many values of the magnitude of the magnetic field. To prove our main theorems a new dynamical system, ‘outer magnetic billiards’, on a constant-curvature surface is introduced, a system ‘dual’ to magnetic billiards. By passing to this dynamical system one can apply methods of algebraic geometry to magnetic billiards. Bibliography: 30 titles.
Keywords: magnetic billiards, constant-curvature surfaces, polynomial integrals.
@article{RM_2019_74_2_a0,
     author = {M. Bialy and A. E. Mironov},
     title = {Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {187--209},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/}
}
TY  - JOUR
AU  - M. Bialy
AU  - A. E. Mironov
TI  - Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 187
EP  - 209
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/
LA  - en
ID  - RM_2019_74_2_a0
ER  - 
%0 Journal Article
%A M. Bialy
%A A. E. Mironov
%T Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 187-209
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/
%G en
%F RM_2019_74_2_a0
M. Bialy; A. E. Mironov. Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/RM_2019_74_2_a0/