@article{RM_2019_74_1_a3,
author = {A. Ya. Maltsev and S. P. Novikov},
title = {Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {141--173},
year = {2019},
volume = {74},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a3/}
}
TY - JOUR AU - A. Ya. Maltsev AU - S. P. Novikov TI - Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 141 EP - 173 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_1_a3/ LA - en ID - RM_2019_74_1_a3 ER -
%0 Journal Article %A A. Ya. Maltsev %A S. P. Novikov %T Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 141-173 %V 74 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2019_74_1_a3/ %G en %F RM_2019_74_1_a3
A. Ya. Maltsev; S. P. Novikov. Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 141-173. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a3/
[1] A. A. Abrikosov, Fundamentals of the theory of metals, North-Holland, New York, 1988, 630 pp.
[2] A. Avila, P. Hubert, A. Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. Math., 206:1 (2016), 109–146 | DOI | MR | Zbl
[3] A. Avila, P. Hubert, A. Skripchenko, “On the Hausdorff dimension of the Rauzy gasket”, Bull. Soc. Math. France, 144:3 (2016), 539–568 | DOI | MR | Zbl
[4] C. W. J. Beenakker, “Guiding-center-drift resonance in a periodically modulated two-dimensional electron gas”, Phys. Rev. Lett., 62:17 (1989), 2020–2023 | DOI
[5] R. De Leo, “The existence and measure of ergodic foliations in Novikov's problem of the semiclassical motion of an electron”, Russian Math. Surveys, 55:1 (2000), 166–168 | DOI | DOI | MR | Zbl
[6] R. De Leo, “Characterization of the set of ‘ergodic directions’ in Novikov's problem of quasi-electron orbits in normal metals”, Russian Math. Surveys, 58:5 (2003), 1042–1043 | DOI | DOI | MR | Zbl
[7] R. De Leo, “First-principles generation of stereographic maps for high-field magnetoresistance in normal metals: An application to Au and Ag”, Phys. B, 362:1-4 (2005), 62–75 | DOI
[8] R. De Leo, “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Experiment. Math., 15:1 (2006), 109–124 | DOI | MR | Zbl
[9] R. De Leo, A survey on quasiperiodic topology, 2017, 44 pp., arXiv: 1711.01716
[10] R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russian Math. Surveys, 62:5 (2007), 990–992 | DOI | DOI | MR | Zbl
[11] R. De Leo, I. A. Dynnikov, “Geometry of plane sections of the infinite regular skew polyhedron $\{ 4, \, 6 \, | \, 4 \}$”, Geom. Dedicata, 138:1 (2009), 51–67 | DOI | MR | Zbl
[12] Yu. A. Dreizin, A. M. Dykhne, “Anomalous conductivity of inhomogeneous media in a strong magnetic field”, Soviet Phys. JETP, 36:1 (1973), 127–136
[13] Yu. A. Dreizin, A. M. Dykhne, “A qualitative theory of the effective conductivity of polycrystals”, Soviet Phys. JETP, 57:5 (1983), 1024–1026
[14] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Russian Math. Surveys, 47:3 (1992), 172–173 | DOI | MR | Zbl
[15] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture on the semiclassical motion of an electron”, Math. Notes, 53:5 (1993), 495–501 | DOI | MR | Zbl
[16] I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 45–73 | DOI | MR | Zbl
[17] I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Russian Math. Surveys, 54:1 (1999), 21–59 | DOI | DOI | MR | Zbl
[18] I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces”, Proc. Steklov Inst. Math., 263 (2008), 65–77 | DOI | MR | Zbl
[19] I. A. Dynnikov, A. Ya. Maltsev, “Topological characteristics of electronic spectra of single crystals”, JETP, 85:1 (1997), 205–208 | DOI
[20] I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26 | DOI | DOI | MR | Zbl
[21] I. Dynnikov, A. Skripchenko, “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics, Novikov's seminar 2012–2014, Amer. Math. Soc. Transl. Ser. 2, 234, Adv. Math. Sci., 67, Amer. Math. Soc., Providence, RI, 2014, 173–199 ; 2013, 22 pp., arXiv: 1309.4884 | DOI | MR | Zbl
[22] I. Dynnikov, A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Tr. MMO, 76, no. 2, MTsNMO, M., 2015, 287–308 | MR | Zbl
[23] H. A. Fertig, “Semiclassical description of a two-dimensional electron in a strong magnetic field and an external potential”, Phys. Rev. B, 38:2 (1988), 996–1015 | DOI
[24] M. I. Kaganov, V. G. Peschansky, “Galvano-magnetic phenomena today and forty years ago”, Phys. Rep., 372:6 (2002), 445–487 | DOI
[25] C. Kittel, Quantum theory of solids, John Wiley Sons, Inc., New York–London, 1964, xii+435 pp. | Zbl
[26] I. M. Lifshitz, M. Ia. Azbel', M. I. Kaganov, “The theory of galvanomagnetic effects in metals”, Soviet Phys. JETP, 4:1 (1957), 41–54 | Zbl
[27] I. M. Lifshits, M. Ya. Azbel', M. I. Kaganov, Electron theory of metals, Consultants Bureau, New York, 1973, 326 pp.
[28] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. I. Classical and quantum mechanics of electrons in metals”, Soviet Phys. Uspekhi, 2:6 (1960), 831–855 | DOI | DOI | MR
[29] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. II. Statistical mechanics and thermodynamics of electrons in metals”, Soviet Phys. Uspekhi, 5:6 (1963), 878–907 | DOI | DOI
[30] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. III. Kinetic properties of electrons in metals”, Soviet Phys. Uspekhi, 8:6 (1966), 805–851 | DOI | DOI
[31] I. M. Lifshitz, V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. I”, Soviet Phys. JETP, 8:5 (1959), 875–883
[32] I. M. Lifshitz, V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. II”, Soviet Phys. JETP, 11:1 (1960), 137–141
[33] A. Ya. Mal'tsev, “Anomalous behavior of the electrical conductivity tensor in strong magnetic fields”, JETP, 85:5 (1997), 934–942 | DOI
[34] A. Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 | DOI | MR | Zbl
[35] A. Ya. Maltsev, “On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface”, JETP, 124:5 (2017), 805–831 | DOI
[36] A. Ya. Maltsev, “Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces”, JETP, 125:5 (2017), 896–905 | DOI | DOI
[37] A. Ya. Maltsev, “The second boundaries of Stability Zones and the angular diagrams of conductivity for metals having complicated Fermi surfaces”, JETP, 127:6 (2018) | DOI
[38] A. Ya. Maltsev, S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc. (N. S.), 34:1 (2003), 171–210 | DOI | MR | Zbl
[39] A. Ya. Maltsev, S. P. Novikov, Dynamical systems, topology, and conductivity in normal metals, 2003, 51 pp., arXiv: cond-mat/0304471
[40] A. Ya. Maltsev, S. P. Novikov, “Dynamical systems, topology and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46 ; Dynamical systems, topology, and conductivity in normal metals in strong magnetic fields, 2003, 22 pp., arXiv: cond-mat/0312708 | DOI | MR | Zbl
[41] A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297 | DOI | DOI
[42] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[43] S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Russian Math. Surveys, 54:5 (1999), 1031–1032 | DOI | DOI | MR | Zbl
[44] S. P. Novikov, A. Ya. Mal'tsev, “Topological quantum characteristics observed in the investigation of the conductivity in normal metals”, JETP Lett., 63:10 (1996), 855–860 | DOI
[45] S. P. Novikov, A. Ya. Mal'tsev, “Topological phenomena in normal metals”, Phys. Usp., 41:3 (1998), 231–239 | DOI | DOI
[46] A. Skripchenko, “Symmetric interval identification systems of order three”, Discrete Contin. Dyn. Syst., 32:2 (2012), 643–656 | DOI | MR | Zbl
[47] A. Skripchenko, “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Global Anal. Geom., 43:3 (2013), 253–271 | DOI | MR | Zbl
[48] D. Weiss, K. V. Klitzing, K. Ploog, G. Weimann, “Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential”, Europhys. Lett. EPL, 8:2 (1989) | DOI
[49] J. M. Ziman, Principles of the theory of solids, Cambridge Univ. Press, New York, 1964, xiii+360 pp. | MR | Zbl
[50] A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russian Math. Surveys, 39:5 (1984), 287–288 | DOI | MR | Zbl
[51] A. Zorich, “Asymptotic flag of an orientable measured foliation on a surface”, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, 479–498 | MR
[52] A. Zorich, “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier (Grenoble), 46:2 (1996), 325–370 | DOI | MR | Zbl
[53] A. Zorich, “On hyperplane sections of periodic surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc, Providence, RI, 1997, 173–189 | DOI | MR | Zbl
[54] A. Zorich, “Deviation for interval exchange transformations”, Ergodic Theory Dynam. Systems, 17:6 (1997), 1477–1499 | DOI | MR | Zbl
[55] A. Zorich, “How do the leaves of a closed 1-form wind around a surface”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, 135–178 | DOI | MR | Zbl
[56] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics and geometry (Les Houches, 2003), v. 1, On random matrices, zeta functions and dynamical systems, Springer, Berlin, 2006, 437–583 | MR | Zbl