@article{RM_2019_74_1_a2,
author = {V. V. Kozlov},
title = {Tensor invariants and integration of differential equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {111--140},
year = {2019},
volume = {74},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/}
}
V. V. Kozlov. Tensor invariants and integration of differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 111-140. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/
[1] S. P. Novikov, I. A. Taimanov, Modern geometric structures and fields, Grad. Stud. Math., 71, Amer. Math. Soc., Providence, RI, 2006, xx+633 pp. | MR | Zbl
[2] H. Poincaré, Calcul des probabilités, Gauthier-Villars, Paris, 1912, 340 pp. | Zbl | Zbl
[3] I. Tamura, Yōsō no toporojī, Sūgaku Sensho, Iwanami Shoten, Tokyo, 1976, 238 pp. | MR | MR | Zbl | Zbl
[4] A. N. Kolmogorov, “On dynamical systems with an integral invariant on a torus”, Selected works of A. N. Kolmogorov, v. I, Mathematics and Its Applications, Soviet Ser., 25, Mathematics and mechanics, Kluwer Academic Publishers, Dordrecht, 1991, 344–348 | MR | Zbl | Zbl
[5] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl
[6] V. V. Kozlov, “Remarks on a Lie theorem on the integrability of differential equations in closed form”, Differ. Equ., 41:4 (2005), 588–590 | DOI | MR | Zbl
[7] J. F. Cariñena, F. Falceto, J. Grabowski, M. F. Rañada, Geometry of Lie integrability by quadratures, 2014, 18 pp., arXiv: 1409.7549
[8] V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl
[9] V. I. Arnol'd, “On a theorem of Liouville concerning integrable problems of dynamics”, Amer. Math. Soc. Transl. Ser. 2, 61, Amer. Math. Soc., Providence, RI, 1967, 292–296 | DOI | MR | Zbl
[10] R. Jost, “Winkel- und Wirkungsvariable für allegemeine mechanische Systeme”, Helv. Phys. Acta, 41 (1968), 965–968
[11] V. V. Kozlov, N. N. Kolesnikov, “Integrability of Hamiltonian systems”, Moscow Univ. Math. Bull., 34:5-6 (1979), 48–51 | MR | Zbl
[12] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl
[13] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl
[14] H. Kocak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl
[15] V. Volterra, “Sopra una classe di equazioni dinamiche”, Atti della R. Accademia delle Scienze di Torino, 33 (1897/1898), 451–475 | Zbl
[16] I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie–Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706 | DOI | DOI | MR | Zbl
[17] V. V. Kozlov, “Integralnye invarianty posle Puankare i Kartana”, Dobavlenie v kn.: E. Kartan, Integralnye invarianty, 2-e izd., Editorial URSS, M., 2005, 217–258
[18] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[19] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl
[20] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 294 pp. | MR | Zbl
[21] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl
[22] R. M. Santilli, Foundations of theoretical mechanics, v. II, Texts Monogr. Phys., Birkhoffian generalization of Hamiltonian mechanics, Springer-Verlag, New York–Berlin, 1983, xix+370 pp. | DOI | MR | Zbl
[23] V. V. Kozlov, Dynamical systems X. General theory of vortices, Encyclopaedia Math. Sci., 67, Springer-Verlag, Berlin, 2003, viii+184 pp. | MR | MR | Zbl | Zbl
[24] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris, 1922, x+210 pp. | MR | Zbl
[25] V. V. Kozlov, “Multigamiltonovost lineinoi sistemy s kvadratichnym invariantom”, Algebra i analiz, 30:5 (2018), 159–168 | MR
[26] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl
[27] D. V. Treshchev, A. A. Shkalikov, “On the Hamiltonian property of linear dynamical systems in Hilbert space”, Math. Notes, 101:6 (2017), 1033–1039 | DOI | DOI | MR | Zbl
[28] Ch. J. de la Vallée-Poussin, Cours d'analyse infinitésimale, v. II, Seconde édition considérablement remaniée, Uyspruyt, Louvain; Gauthier-Villars, Paris, 1912, ix+464 pp. | MR | Zbl
[29] V. Volterra, “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI | MR | Zbl
[30] V. I. Arnol'd, “Poly-integrable flows”, St. Petersburg Math. J., 4:6 (1993), 1103–1110 | MR | Zbl
[31] V. V. Kozlov, “Dynamical systems with multivalued integrals on a torus”, Proc. Steklov Inst. Math., 256 (2007), 188–205 | DOI | MR | Zbl
[32] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[33] I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26 | DOI | DOI | MR | Zbl
[34] V. V. Kozlov, “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl
[35] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o vraschenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki”, Tr. otd. fiz. nauk o-va lyubitelei estestvoznaniya, 12:1 (1904), 1–4 | Zbl
[36] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2019, vii+526 pp. | MR | Zbl | Zbl
[37] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fiz. nauk o-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10
[38] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl
[39] S. Kowalewski, “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12:2 (1889), 177–232 | DOI | MR | Zbl
[40] A. M. Lyapunov, “Ob odnom svoistve differentsialnykh uravnenii zadachi o dvizhenii tyazhelogo tverdogo tela, imeyuschego nepodvizhnuyu tochku”, Soobsch. Khark. matem. o-va. Ser. 2, 4 (1894), 123–140 | Zbl
[41] R. Conte, M. Musette, The Painlevé handbook, Springer, Dordrecht, 2008, xxiv+256 pp. | DOI | MR | Zbl
[42] H. Yoshida, “Necessary condition for the existence of algebraic first integrals. I. Kowalevski's exponents”, Celestial Mech., 31:4 (1983), 363–379 ; “II. Condition for algebraic integrability”, 381–399 | DOI | MR | Zbl | DOI | MR | Zbl
[43] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl | Zbl
[44] V. V. Kozlov, “Tensor invariants of quasihomogeneous systems of differential equations, and the Kovalevskaya–Lyapunov asymptotic method”, Math. Notes, 51:2 (1992), 138–142 | DOI | MR | Zbl
[45] S. D. Furta, “On non-integrability of general systems of differential equations”, Z. Angew. Math. Phys., 47:1 (1996), 112–131 | DOI | MR | Zbl
[46] A. V. Borisov, A. V. Tsygvintsev, “Pokazateli Kovalevskoi i integriruemye siistemy klassicheskoi dinamiki. I, II”, Regul. Chaotic Dyn., 1:1 (1996), 15–37 | MR | Zbl
[47] V. V. Kozlov, S. D. Furta, Asymptotic solutions of strongly nonlinear systems of differential equations, Springer Monogr. Math., Springer, Heidelberg, 2013, xx+262 pp. | DOI | MR | MR | Zbl | Zbl
[48] P. Lochak, “Pairing of the Kowalevska exponents in Hamiltonian systems”, Phys. Lett. A, 108:4 (1985), 188–190 | DOI | MR
[49] S. T. Sadètov, “Resonances for Kovalevskaya exponents and their memory of some tensor laws of conservation”, Moscow Univ. Mech. Bull., 49:1 (1994), 33–40 | MR | Zbl
[50] A. J. Maciejewski, M. Przybylska, “Global properties of Kovalevskaya exponents”, Regular Chaotic Dyn., 22:7 (2017), 840–850 | DOI | MR