Tensor invariants and integration of differential equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 111-140
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between tensor invariants of systems of differential equations and explicit integration of them is discussed. A general result on the integrability of dynamical systems admitting a complete set of integral invariants in the sense of Cartan is proved. The existence of an invariant 1-form is related to the representability of the dynamical system in Hamiltonian form (with a symplectic structure which may be degenerate). This general idea is illustrated using an example of linear systems of differential equations. A general concept of flags of tensor invariants is introduced. General relations between the Kovalevskaya exponents of quasi-homogeneous systems of differential equations and flags of quasi-homogeneous tensor invariants having a certain structure are established. Results of a general nature are applied, in particular, to show that the general solution of the equations of rotation for a rigid body is branching in the Goryachev–Chaplygin case. Bibliography: 50 titles.
Keywords: tensors, invariant forms and fields, flags, quasi-homogeneous systems, Kovalevskaya exponents, Goryachev–Chaplygin case.
@article{RM_2019_74_1_a2,
     author = {V. V. Kozlov},
     title = {Tensor invariants and integration of differential equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {111--140},
     year = {2019},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Tensor invariants and integration of differential equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 111
EP  - 140
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/
LA  - en
ID  - RM_2019_74_1_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Tensor invariants and integration of differential equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 111-140
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/
%G en
%F RM_2019_74_1_a2
V. V. Kozlov. Tensor invariants and integration of differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 111-140. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a2/

[1] S. P. Novikov, I. A. Taimanov, Modern geometric structures and fields, Grad. Stud. Math., 71, Amer. Math. Soc., Providence, RI, 2006, xx+633 pp. | MR | Zbl

[2] H. Poincaré, Calcul des probabilités, Gauthier-Villars, Paris, 1912, 340 pp. | Zbl | Zbl

[3] I. Tamura, Yōsō no toporojī, Sūgaku Sensho, Iwanami Shoten, Tokyo, 1976, 238 pp. | MR | MR | Zbl | Zbl

[4] A. N. Kolmogorov, “On dynamical systems with an integral invariant on a torus”, Selected works of A. N. Kolmogorov, v. I, Mathematics and Its Applications, Soviet Ser., 25, Mathematics and mechanics, Kluwer Academic Publishers, Dordrecht, 1991, 344–348 | MR | Zbl | Zbl

[5] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl

[6] V. V. Kozlov, “Remarks on a Lie theorem on the integrability of differential equations in closed form”, Differ. Equ., 41:4 (2005), 588–590 | DOI | MR | Zbl

[7] J. F. Cariñena, F. Falceto, J. Grabowski, M. F. Rañada, Geometry of Lie integrability by quadratures, 2014, 18 pp., arXiv: 1409.7549

[8] V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl

[9] V. I. Arnol'd, “On a theorem of Liouville concerning integrable problems of dynamics”, Amer. Math. Soc. Transl. Ser. 2, 61, Amer. Math. Soc., Providence, RI, 1967, 292–296 | DOI | MR | Zbl

[10] R. Jost, “Winkel- und Wirkungsvariable für allegemeine mechanische Systeme”, Helv. Phys. Acta, 41 (1968), 965–968

[11] V. V. Kozlov, N. N. Kolesnikov, “Integrability of Hamiltonian systems”, Moscow Univ. Math. Bull., 34:5-6 (1979), 48–51 | MR | Zbl

[12] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl

[13] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl

[14] H. Kocak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl

[15] V. Volterra, “Sopra una classe di equazioni dinamiche”, Atti della R. Accademia delle Scienze di Torino, 33 (1897/1898), 451–475 | Zbl

[16] I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie–Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706 | DOI | DOI | MR | Zbl

[17] V. V. Kozlov, “Integralnye invarianty posle Puankare i Kartana”, Dobavlenie v kn.: E. Kartan, Integralnye invarianty, 2-e izd., Editorial URSS, M., 2005, 217–258

[18] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[19] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl

[20] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 294 pp. | MR | Zbl

[21] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl

[22] R. M. Santilli, Foundations of theoretical mechanics, v. II, Texts Monogr. Phys., Birkhoffian generalization of Hamiltonian mechanics, Springer-Verlag, New York–Berlin, 1983, xix+370 pp. | DOI | MR | Zbl

[23] V. V. Kozlov, Dynamical systems X. General theory of vortices, Encyclopaedia Math. Sci., 67, Springer-Verlag, Berlin, 2003, viii+184 pp. | MR | MR | Zbl | Zbl

[24] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris, 1922, x+210 pp. | MR | Zbl

[25] V. V. Kozlov, “Multigamiltonovost lineinoi sistemy s kvadratichnym invariantom”, Algebra i analiz, 30:5 (2018), 159–168 | MR

[26] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl

[27] D. V. Treshchev, A. A. Shkalikov, “On the Hamiltonian property of linear dynamical systems in Hilbert space”, Math. Notes, 101:6 (2017), 1033–1039 | DOI | DOI | MR | Zbl

[28] Ch. J. de la Vallée-Poussin, Cours d'analyse infinitésimale, v. II, Seconde édition considérablement remaniée, Uyspruyt, Louvain; Gauthier-Villars, Paris, 1912, ix+464 pp. | MR | Zbl

[29] V. Volterra, “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI | MR | Zbl

[30] V. I. Arnol'd, “Poly-integrable flows”, St. Petersburg Math. J., 4:6 (1993), 1103–1110 | MR | Zbl

[31] V. V. Kozlov, “Dynamical systems with multivalued integrals on a torus”, Proc. Steklov Inst. Math., 256 (2007), 188–205 | DOI | MR | Zbl

[32] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[33] I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26 | DOI | DOI | MR | Zbl

[34] V. V. Kozlov, “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl

[35] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o vraschenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki”, Tr. otd. fiz. nauk o-va lyubitelei estestvoznaniya, 12:1 (1904), 1–4 | Zbl

[36] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2019, vii+526 pp. | MR | Zbl | Zbl

[37] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fiz. nauk o-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10

[38] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl

[39] S. Kowalewski, “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12:2 (1889), 177–232 | DOI | MR | Zbl

[40] A. M. Lyapunov, “Ob odnom svoistve differentsialnykh uravnenii zadachi o dvizhenii tyazhelogo tverdogo tela, imeyuschego nepodvizhnuyu tochku”, Soobsch. Khark. matem. o-va. Ser. 2, 4 (1894), 123–140 | Zbl

[41] R. Conte, M. Musette, The Painlevé handbook, Springer, Dordrecht, 2008, xxiv+256 pp. | DOI | MR | Zbl

[42] H. Yoshida, “Necessary condition for the existence of algebraic first integrals. I. Kowalevski's exponents”, Celestial Mech., 31:4 (1983), 363–379 ; “II. Condition for algebraic integrability”, 381–399 | DOI | MR | Zbl | DOI | MR | Zbl

[43] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl | Zbl

[44] V. V. Kozlov, “Tensor invariants of quasihomogeneous systems of differential equations, and the Kovalevskaya–Lyapunov asymptotic method”, Math. Notes, 51:2 (1992), 138–142 | DOI | MR | Zbl

[45] S. D. Furta, “On non-integrability of general systems of differential equations”, Z. Angew. Math. Phys., 47:1 (1996), 112–131 | DOI | MR | Zbl

[46] A. V. Borisov, A. V. Tsygvintsev, “Pokazateli Kovalevskoi i integriruemye siistemy klassicheskoi dinamiki. I, II”, Regul. Chaotic Dyn., 1:1 (1996), 15–37 | MR | Zbl

[47] V. V. Kozlov, S. D. Furta, Asymptotic solutions of strongly nonlinear systems of differential equations, Springer Monogr. Math., Springer, Heidelberg, 2013, xx+262 pp. | DOI | MR | MR | Zbl | Zbl

[48] P. Lochak, “Pairing of the Kowalevska exponents in Hamiltonian systems”, Phys. Lett. A, 108:4 (1985), 188–190 | DOI | MR

[49] S. T. Sadètov, “Resonances for Kovalevskaya exponents and their memory of some tensor laws of conservation”, Moscow Univ. Mech. Bull., 49:1 (1994), 33–40 | MR | Zbl

[50] A. J. Maciejewski, M. Przybylska, “Global properties of Kovalevskaya exponents”, Regular Chaotic Dyn., 22:7 (2017), 840–850 | DOI | MR