@article{RM_2019_74_1_a1,
author = {V. Z. Grines and E. Ya. Gurevich and E. V. Zhuzhoma and O. V. Pochinka},
title = {Classification of {Morse{\textendash}Smale} systems and topological structure of the underlying manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {37--110},
year = {2019},
volume = {74},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a1/}
}
TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - E. V. Zhuzhoma AU - O. V. Pochinka TI - Classification of Morse–Smale systems and topological structure of the underlying manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 37 EP - 110 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2019_74_1_a1/ LA - en ID - RM_2019_74_1_a1 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A E. V. Zhuzhoma %A O. V. Pochinka %T Classification of Morse–Smale systems and topological structure of the underlying manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 37-110 %V 74 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2019_74_1_a1/ %G en %F RM_2019_74_1_a1
V. Z. Grines; E. Ya. Gurevich; E. V. Zhuzhoma; O. V. Pochinka. Classification of Morse–Smale systems and topological structure of the underlying manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 37-110. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a1/
[1] A. A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | Zbl
[2] D. V. Anosov, “Roughness of geodesic flows on compact Riemannian manifolds of negative curvature”, Soviet Math. Dokl., 3 (1962), 1068–1070 | MR | Zbl
[3] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl
[4] S. H. Aranson, “Trajectories on nonorientable two-dimensional manifolds”, Math. USSR-Sb., 9:3 (1969), 297–313 | DOI | MR | Zbl
[5] R. H. Fox, E. Artin, “Some wild cells and spheres in three-dimensional space”, Ann. of Math. (2), 49:4 (1948), 979–990 | DOI | MR | Zbl
[6] D. Asimov, “Round handles and non-singular Morse–Smale flows”, Ann. of Math. (2), 102:1 (1975), 41–54 | DOI | MR | Zbl
[7] D. Asimov, “Homotopy of non-singular vector fields to structurally stable ones”, Ann. of Math. (2), 102:1 (1975), 55–65 | DOI | MR | Zbl
[8] F. Béguin, “Classification des difféomorphismes de Smale des surfaces: types géométriques réalisables”, Ann. Inst. Fourier (Grenoble), 52:4 (2002), 1135–1185 | DOI | MR | Zbl
[9] F. Béguin, “Smale diffeomorphisms of surfaces: a classification algorithm”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 261–310 | DOI | MR | Zbl
[10] A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I, II”, Selecta Math. Soviet., 11:1 (1992), 1–11, 13–17 | MR | MR | MR | MR | Zbl
[11] A. N. Bezdenezhnykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Selecta Math. Soviet., 11:1 (1992), 19–23 | MR | MR | Zbl
[12] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[13] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl
[14] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl
[15] Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds”, Proc. Steklov Inst. Math., 250 (2005), 1–46 | MR | Zbl
[16] Ch. Bonatti, V. Grines, O. Pochinka, “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, World Sci. Publ., Hackensack, NJ, 2006, 121–147 | DOI | MR | Zbl
[17] Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on $3$-manifolds”, Proc. Steklov Inst. Math., 297 (2017), 35–49 | DOI | DOI | MR | Zbl
[18] Ch. Bonatti, V. Grines, O. Pochinka, Topological classification of Morse–Smale diffeomorphisms on 3-manifolds, 2017, 48 pp., arXiv: 1710.08292
[19] Ch. Bonatti, V. Grines, O. Pochinka, S. Van Strien, A complete topological classification of Morse–Smale diffeomorphisms on surfaces: a kind of kneading theory in dimension two, preprint
[20] C. Bonatti, R. Langevin, Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. Math. France, Paris, 1998, viii+235 pp. | MR | Zbl
[21] Ch. Bonatti, L. Paoluzzi, “3-manifolds which are orbit spaces of diffeomorphisms”, Topology, 47:2 (2008), 71–100 | DOI | MR | Zbl
[22] M. Brown, “Locally flat imbeddings of topological manifolds”, Ann. of Math. (2), 75:2 (1962), 331–341 | DOI | MR | Zbl
[23] B. Campos, A. Cordero, J. Martínez-Alfaro, P. Vindel, “NMS flows on three-dimensional manifolds with one saddle periodic orbit”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 47–56 | DOI | MR | Zbl
[24] B. Campos, J. Martínez-Alfaro, P. Vindel, “Bifurcations of links of periodic orbits in non-singular Morse–Smale systems on $S^3$”, Nonlinearity, 10:5 (1997), 1339–1355 | DOI | MR | Zbl
[25] B. Campos, P. Vindel, “Non equivalence of NMS flows on $S^3$”, Math. Bohemica, 137:2 (2012), 165–173 | MR | Zbl
[26] J. C. Cantrell, “Almost locally flat embeddings $S^{n-1}$ in $S^{n}$”, Bull. Amer. Math. Soc., 69:4 (1963), 716–718 | MR | Zbl
[27] J. C. Cantrell, C. H. Edwards, “Almost locally polyhedral curves in Euclidean $n$-space”, Trans. Amer. Math. Soc., 107:3 (1963), 451–457 | DOI | MR | Zbl
[28] A. Cobham, “The intrinsic computational difficulty of functions”, Logic, methodology, and philosophy of science, Proc. 1964 Internat. Congr., North-Holland, Amsterdam, 1965, 24–30 | MR | Zbl
[29] H. Debrunner, R. Fox, “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27:3 (1960), 425–429 | DOI | MR | Zbl
[30] J. Eells, Jr., N. H. Kuiper, “Manifolds which are like projective planes”, Inst. Hautes Études Sci. Publ. Math., 14 (1962), 5–46 | DOI | MR | Zbl
[31] G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR | Zbl
[32] J. Franks, “The periodic structure of non-singular Morse–Smale flows”, Comment. Math. Helv., 53 (1978), 279–294 | DOI | MR | Zbl
[33] J. Franks, “Nonsingular Smale flows on $S^{3}$”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl
[34] V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881–889 | DOI | MR | Zbl
[35] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Peixoto graph of Morse–Smale diffeomorphisms on manifolds of dimension greater than three”, Proc. Steklov Inst. Math., 261 (2008), 59–83 | DOI | MR | Zbl
[36] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Proc. Steklov Inst. Math., 270 (2010), 57–79 | DOI | MR | Zbl
[37] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse–Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784 | DOI | DOI | MR | Zbl
[38] V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The energy function of gradient-like flows and the topological classification problem”, Math. Notes, 96:6 (2014), 921–927 | DOI | DOI | MR | Zbl
[39] V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci. (N. Y.), 208:1 (2015), 81–90 | DOI | MR | Zbl
[40] V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Kombinatornyi invariant dlya kaskadov Morsa–Smeila bez geteroklinicheskikh peresechenii na sfere $S^n$, $n\geqslant 4$”, Matem. zametki, 105:1 (2019), 136–141 | DOI
[41] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, V. S. Medvedev, “O topologii mnogoobrazii, dopuskayuschikh gradientno-podobnye potoki s zadannym nebluzhdayuschim mnozhestvom”, Matem. trudy, 21:2 (2018), 163–180 | DOI
[42] V. Z. Grines, S. Kh. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 | DOI | DOI | MR | Zbl
[43] V. Z. Grines, D. S. Malyshev, O. V. Pochinka, S. Kh. Zinina, “Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorphisms”, Regul. Chaotic Dyn., 21:2 (2016), 189–203 | DOI | MR | Zbl
[44] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl
[45] V. Grines, T. Medvedev, O. Pochinka, E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5 | DOI | MR | Zbl
[46] V. Z. Grines, T. M. Mitryakova, O. V. Pochinka, “Novye topologicheskie invarianty negradientno-podobnykh diffeomorfizmov na orientiruemykh poverkhnostyakh”, Tr. Srednevolzhskogo matem. o-va, 7:1 (2005), 123–129
[47] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | DOI | MR | Zbl
[48] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Morse–Smale diffeomorphisms with four periodic points on closed orientable manifolds”, Math. Notes, 74:3 (2003), 352–366 | DOI | DOI | MR | Zbl
[49] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On the structure of the ambient manifold for Morse–Smale systems without heteroclinic intersections”, Proc. Steklov Inst. Math., 297 (2017), 179–187 | DOI | DOI | MR | Zbl
[50] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl
[51] V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 5–40 | MR
[52] V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Dinamicheskie sistemy i topologiya magnitnykh polei v provodyaschei srede”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 3, RUDN, M., 2017, 455–474 | MR
[53] D. M. Grobman, “O gomeomorfizme sistem differentsialnykh uravnenii”, Dokl. AN SSSR, 128:5 (1959), 880–881 | MR | Zbl
[54] D. M. Grobman, “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v $n$-mernom prostranstve”, Matem. sb., 56(98):1 (1962), 77–94 | MR | Zbl
[55] E. Ya. Gurevich, V. S. Medvedev, “O mnogoobraziyakh razmernosti $n$, dopuskayuschikh diffeomorfizmy s sedlovymi tochkami indeksov $1$ i $n-1$”, Tr. Crednevolzhskogo matem. o-va, 8:1 (2006), 204–208 | Zbl
[56] C. Gutiérrez, “Structural stability for flows on the torus with a cross-cap”, Trans. Amer. Math. Soc., 241 (1978), 311–320 | DOI | MR | Zbl
[57] P. Hartman, “On the local linearization of differential equations”, Proc. Amer. Math. Soc., 14:4 (1963), 568–573 | DOI | MR | Zbl
[58] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | DOI | MR | Zbl
[59] M. A. Kervaire, J. W. Milnor, “Groups of homotopy spheres. I”, Ann. of Math. (2), 77:3 (1963), 504–537 | DOI | MR | Zbl
[60] R. C. Kirby, “On the set of non-locally flat points of a submanifold of codimension one”, Ann. of Math. (2), 88:2 (1968), 281–290 | DOI | MR | Zbl
[61] V. Kruglov, D. Malyshev, O. Pochinka, “Topological classification of $\Omega$-stable flows on surfaces by means of effectively distinguishable multigraphs”, Discrete Contin. Dyn. Syst., 38:9 (2018), 4305–4327 | DOI | MR | Zbl
[62] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “On algorithms that effectively distinguish gradient-like dynamics”, Regul. Chaotic Dyn. (to appear)
[63] R. Langevin, “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278 | DOI | MR | Zbl
[64] J. M. Lee, Introduction to smooth manifolds, Grad. Texts in Math., 218, 2nd rev. ed., Spinger, New York, 2013, xvi+708 pp. | DOI | MR | Zbl
[65] E. A. Leontovich, A. G. Maier, “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. AN SSSR, 14:5 (1937), 251–257 | Zbl
[66] E. A. Leontovich, A. G. Maier, “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSR, 103:4 (1955), 557–560 | MR | Zbl
[67] A. G. Maier, “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uch. zap. Gork. gos. un-ta, 1939, no. 12, 215–229
[68] N. G. Markley, “The Poincaré–Bendixson theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl
[69] Y. Matsumoto, An introduction to Morse theory, Transl. from the Japan., Transl. Math. Monogr., 208, Iwanami Series in Modern Mathematics, Amer. Math. Soc., Providence, RI, 2002, xiv+219 pp. | MR | Zbl
[70] S. V. Matveev, “Classification of sufficiently large three-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1029–1055 | DOI | DOI | MR | Zbl
[71] V. S. Medvedev, E. V. Zhuzhoma, “Morse–Smale systems with few non-wandering points”, Topology Appl., 160:3 (2013), 498–507 | DOI | MR | Zbl
[72] K. R. Meyer, “Energy functions for Morse Smale systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | DOI | MR | Zbl
[73] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl
[74] J. Milnor, Morse theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963, vi+153 pp. | MR | Zbl
[75] T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Proc. Steklov Inst. Math., 270 (2010), 194–215 | DOI | MR | Zbl
[76] J. W. Morgan, “Non-singular Morse–Smale flows on 3-dimensional manifolds”, Topology, 18:1 (1979), 41–53 | DOI | MR | Zbl
[77] M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ., 18, Amer. Math. Soc., New York, 1934, xii+368 pp. | MR | Zbl
[78] J. Nielsen, “Die Structur periodischer Transformationen von Flächen”, Danske Vidensk. Selsk. Math.-Fys. Medd., 15:1 (1937), 1–77 | Zbl
[79] I. Nikolaev, “Graphs and flows on surfaces”, Ergodic Theory Dynam. Systems, 18:1 (1998), 207–220 | DOI | MR | Zbl
[80] I. Nikolaev, E. Zhuzhoma, Flows on 2-dimensional manifolds. An overview, Lecture Notes in Math., 1705, Springer-Verlag, Berlin, 1999, xx+294 pp. | DOI | MR | Zbl
[81] A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | DOI | MR | Zbl
[82] J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR | Zbl
[83] J. Palis, Jr., W. de Melo, Geometric theory of dynamical systems. An introduction, Transl. from the Portuguese, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | MR | Zbl
[84] J. Palis, S. Smale, “Structural stability theorems”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 | DOI | MR | Zbl
[85] M. M. Peixoto, “On structural stability”, Ann. of Math. (2), 69 (1959), 199–222 | DOI | MR | Zbl
[86] M. M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 ; A further remark, Topology, 2:1-2 (1963), 179–180 | DOI | MR | Zbl | DOI | MR | Zbl
[87] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Dyn. Syst. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 389–419 | DOI | MR | Zbl
[88] Ya. B. Pesin, A. A. Yurchenko, “Some physical models of the reaction-diffusion equation, and coupled map lattices”, Russian Math. Surveys, 59:3 (2004), 481–513 | DOI | DOI | MR | Zbl
[89] S. Ju. Piljugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Differential Equations, 14 (1978), 170–177 | MR | Zbl
[90] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[91] V. A. Pliss, “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. Leningrad. un-ta. Ser. 1. Matem. Mekh. Astron., 13 (1960), 15–23 | MR | Zbl
[92] A. O. Prishlyak, “Morse–Smale vector fields without closed trajectories on 3-manifolds”, Math. Notes, 71:2 (2002), 230–235 | DOI | DOI | MR | Zbl
[93] A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N. Y.), 144:5 (2007), 4492–4499 | DOI | MR | Zbl
[94] C. Pugh, M. Shub, “The $\Omega$-stability theorem for flows”, Invent. Math., 11:2 (1970), 150–158 | DOI | MR | Zbl
[95] C. C. Pugh, R. B. Walker, F. W. Wilson, “On Morse–Smale approximations – a counterexample”, J. Differential Equations, 23:1 (1977), 173–182 | DOI | MR | Zbl
[96] T. Radó, “Über den Begriff der Riemannschen Fläche”, Acta Univ. Szeged, 2 (1925), 101–121 | Zbl
[97] G. Zeifert, V. Trelfall, Topologiya, GONTI, M.–L., 1938, 400 pp.; H. Seifert, W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp. ; H. Seifert, W. Threlfall, A textbook of topology, Pure Appl. Math., 89, Academic Press, Inc., New York–London, 1980, xvi+437 СЃ. | Zbl | MR | Zbl
[98] M. Shub, D. Sullivan, “Homology theory and dynamical systems”, Topology, 14:2 (1975), 109–132 | DOI | MR | Zbl
[99] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[100] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74:1 (1961), 199–206 | DOI | MR | Zbl
[101] S. Smale, “Diffeomorphisms with many periodic points”, Differential and combinatorial topology, Princeton Univ. Press, Princeton, NJ, 1965, 63–80 | MR | Zbl
[102] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | MR | Zbl
[103] Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 | DOI | MR | Zbl
[104] I. Yu. Vlasenko, “A full invariant for Morse–Smale diffeomorphisms on non-orientable surfaces”, Russian Math. Surveys, 54:5 (1999), 1058–1059 | DOI | DOI | MR | Zbl
[105] M. Wada, “Closed orbits of non-singular Morse–Smale flows on $S^3$”, J. Math. Soc. Japan, 41:3 (1989), 405–413 | DOI | MR | Zbl
[106] F. Waldhausen, “On irreducible 3-manifolds which are sufficiently large”, Ann. of Math. (2), 87 (1968), 56–88 | DOI | MR | Zbl
[107] X. Wang, “The $C^*$-algebras of Morse–Smale flows on two-manifolds”, Ergodic Theory Dynam. Systems, 10:3 (1990), 565–597 | DOI | MR | Zbl
[108] K. Yokoyama, “Classification of periodic maps on compact surfaces. I”, Tokyo J. Math., 6:1 (1983), 75–94 | DOI | MR | Zbl
[109] B. Yu, “Behavior 0 nonsingular Morse Smale flows on $S^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509–540 | DOI | MR | Zbl
[110] E. V. Zhuzhoma, V. S. Medvedev, “Gradient flows with wildly embedded closures of separatrices”, Proc. Steklov Inst. Math., 270 (2010), 132–140 | DOI | MR | Zbl
[111] E. V. Zhuzhoma, V. S. Medvedev, “Morse–Smale systems with three nonwandering points”, Dokl. Math., 84:2 (2011), 604–606 | DOI | MR | Zbl
[112] E. V. Zhuzhoma, V. S. Medvedev, “Continuous Morse–Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723 | DOI | DOI | MR | Zbl