Mots-clés : Alexander polynomial
@article{RM_2019_74_1_a0,
author = {E. A. Gorsky},
title = {Introduction to {Heegaard} {Floer} homology},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--35},
year = {2019},
volume = {74},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/}
}
E. A. Gorsky. Introduction to Heegaard Floer homology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/
[1] V. I. Arnol'd, “Characteristic class entering in quantization conditions”, Funct. Anal. Appl., 1:1 (1967), 1–13 | DOI | MR | Zbl
[2] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl
[3] M. F. Atiyah, R. Bott, A. Shapiro, “Clifford modules”, Topology, 3, suppl. 1 (1964), 3–38 | DOI | MR | Zbl
[4] M. Borodzik, M. Hedden, C. Livingston, “Plane algebraic curves of arbitrary genus via Heegaard Floer homology”, Comment. Math. Helv., 92:2 (2017), 215–256 | DOI | MR | Zbl
[5] M. Borodzik, C. Livingston, “Heegaard Floer homology and rational cuspidal curves”, Forum Math. Sigma, 2 (2014), e28, 23 pp. | DOI | MR | Zbl
[6] M. Borodzik, C. Livingston, “Semigroups, $d$-invariants and deformations of cuspidal singular points of plane curves”, J. Lond. Math. Soc. (2), 93:2 (2016), 439–463 | DOI | MR | Zbl
[7] S. Boyer, A. Clay, “Foliations, orders, representations, L-spaces and graph manifolds”, Adv. Math., 310 (2017), 159–234 | DOI | MR | Zbl
[8] S. Boyer, C. McA. Gordon, L. Watson, “On L-spaces and left-orderable fundamental groups”, Math. Ann., 356:4 (2013), 1213–1245 | DOI | MR | Zbl
[9] S. Boyer, D. Rolfsen, B. Wiest, “Orderable 3-manifold groups”, Ann. Inst. Fourier (Grenoble), 55:1 (2005), 243–288 | DOI | MR | Zbl
[10] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 125–156 | DOI | MR | Zbl
[11] P. Dehornoy, “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 345:1 (1994), 115–150 | DOI | MR | Zbl
[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, Panor. Synthèses, 14, Soc. Math. France, Paris, 2002, xiv+190 pp. | MR | Zbl
[13] S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, J. Differential Geom., 18:2 (1983), 279–315 | DOI | MR | Zbl
[14] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp. | MR | Zbl
[15] Ya. Eliashberg, L. Traynor (eds.), Symplectic geometry and topology, Lecture notes from the graduate summer school program (Park City, UT, USA, 1997), IAS/Park City Math. Ser., 7, Amer. Math. Soc., Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999, xiv+430 pp. | MR | Zbl
[16] N. D. Elkies, “A characterization of the $\mathbb{Z}^n$ lattice”, Math. Res. Lett., 2:3 (1995), 321–326 | DOI | MR | Zbl
[17] J. Fernández de Bobadilla, I. Luengo-Velasco, A. Melle-Hernández, A. Némethi, “On rational cuspidal projective plane curves”, Proc. London Math. Soc. (3), 92:1 (2006), 99–138 | DOI | MR | Zbl
[18] P. Ghiggini, “Knot Floer homology detects genus-one fibred knots”, Amer. J. Math., 130:5 (2008), 1151–1169 | DOI | MR | Zbl
[19] E. Gorsky, A. Némethi, “Lattice and Heegaard Floer homologies of algebraic links”, Int. Math. Res. Not. IMRN, 2015:23 (2015), 12737–12780 | DOI | MR | Zbl
[20] E. Gorsky, A. Némethi, “Links of plane curve singularities are $L$-space links”, Algebr. Geom. Topol., 16:4 (2016), 1905–1912 | DOI | MR | Zbl
[21] H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146:4 (1962), 331–368 | DOI | MR | Zbl
[22] D. V. Gugnin, On integral cohomology ring of symmetric products, 2017 (v1 – 2015), 17 pp., arXiv: 1502.01862
[23] A. Haefliger, “Sur l'extension du groupe structural d'un espace fibré”, C. R. Acad. Sci. Paris, 243 (1956), 558–560 | MR | Zbl
[24] J. Hanselman, “Bordered Heegaard Floer homology and graph manifolds”, Algebr. Geom. Topol., 16:6 (2016), 3103–3166 | DOI | MR | Zbl
[25] J. Hanselman, J. Rasmussen, S. D. Rasmussen, L. Watson, Taut foliations on graph manifolds, 2015, 9 pp., arXiv: 1508.05911
[26] J. Hom, “A note on the concordance invariants epsilon and upsilon”, Proc. Amer. Math. Soc., 144:2 (2016), 897–902 | DOI | MR | Zbl
[27] J. Hom, Ç. Karakurt, T. Lidman, “Surgery obstructions and Heegaard Floer homology”, Geom. Topol., 20:4 (2016), 2219–2251 | DOI | MR | Zbl
[28] H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608 | DOI | MR | Zbl
[29] H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry, Princeton Math. Ser., 38, Princeton Univ. Press, Princeton, NJ, 1989, xii+427 pp. | MR | Zbl
[30] W. B. R. Lickorish, “A representation of orientable combinatorial 3-manifolds”, Ann. of Math. (2), 76:3 (1962), 531–540 | DOI | MR | Zbl
[31] P. A. Linnell, “Left ordered amenable and locally indicable groups”, J. Lond. Math. Soc. (2), 60:1 (1999), 133–142 | DOI | MR | Zbl
[32] P. Lisca, A. I. Stipsicz, “Ozsváth–Szabó invariants and tight contact 3-manifolds. III”, J. Symplectic Geom., 5:4 (2007), 357–384 | DOI | MR | Zbl
[33] B. Liu, Heegaard Floer homology of $L$-space links with two components, 2017, 23 pp., arXiv: 1704.02538
[34] Y. Liu, “$L$-space surgeries on links”, Quantum Topol., 8:3 (2017), 505–570 | DOI | MR | Zbl
[35] I. G. MacDonald, “Symmetric products of an algebraic curve”, Topology, 1 (1962), 319–343 | DOI | MR | Zbl
[36] C. Manolescu, “$\operatorname{Pin}(2)$-equivariant Seiberg–Witten Floer homology and the triangulation conjecture”, J. Amer. Math. Soc., 29:1 (2016), 147–176 | DOI | MR | Zbl
[37] C. Manolescu, P. Ozsváth, Heegaard Floer homology and integer surgeries on links, 2017 (v1 – 2010), 231 pp., arXiv: 1011.1317
[38] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | MR | Zbl | Zbl
[39] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1998, x+486 pp. | MR | Zbl
[40] A. Némethi, “On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds”, Geom. Topol., 9 (2005), 991–1042 | DOI | MR | Zbl
[41] A. Némethi, “Links of rational singularities, L-spaces and LO fundamental groups”, Invent. Math., 210:1 (2017), 69–83 | DOI | MR | Zbl
[42] Y. Ni, “Knot Floer homology detects fibred knots”, Invent. Math., 170:3 (2007), 577–608 | DOI | MR | Zbl
[43] Y. Ni, Z. Wu, “Heegaard Floer correction terms and rational genus bounds”, Adv. Math., 267 (2014), 360–380 | DOI | MR | Zbl
[44] P. Ozsváth, A. Stipsicz, Z. Szabó, “Concordance homomorphisms from knot Floer homology”, Adv. Math., 315 (2017), 366–426 | DOI | MR | Zbl
[45] P. Ozsváth, Z. Szabó, “Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary”, Adv. Math., 173:2 (2003), 179–261 | DOI | MR | Zbl
[46] P. Ozsváth, Z. Szabó, “On the Floer homology of plumbed three-manifolds”, Geom. Topol., 7 (2003), 185–224 | DOI | MR | Zbl
[47] P. Ozsváth, Z. Szabó, “Heegaard Floer homology and alternating knots”, Geom. Topol., 7 (2003), 225–254 | DOI | MR | Zbl
[48] P. Ozsváth, Z. Szabó, “Knot Floer homology and the four-ball genus”, Geom. Topol., 7 (2003), 615–639 | DOI | MR | Zbl
[49] P. Ozsváth, Z. Szabó, “Holomorphic disks and genus bounds”, Geom. Topol., 8 (2004), 311–334 | DOI | MR | Zbl
[50] P. Ozsváth, Z. Szabó, “Holomorphic disks and knot invariants”, Adv. Math., 186:1 (2004), 58–116 | DOI | MR | Zbl
[51] P. Ozsváth, Z. Szabó, “Holomorphic disks and topological invariants for closed three-manifolds”, Ann. of Math. (2), 159:3 (2004), 1027–1158 | DOI | MR | Zbl
[52] P. Ozsváth, Z. Szabó, “Holomorphic disks and three-manifold invariants: properties and applications”, Ann. of Math. (2), 159:3 (2004), 1159–1245 | DOI | MR | Zbl
[53] P. Ozsváth, Z. Szabó, “Heegaard Floer homology and contact structures”, Duke Math. J., 129:1 (2005), 39–61 | DOI | MR | Zbl
[54] P. Ozsváth, Z. Szabó, “On knot Floer homology and lens space surgeries”, Topology, 44:6 (2005), 1281–1300 | DOI | MR | Zbl
[55] P. Ozsváth, Z. Szabó, “Holomorphic triangles and invariants for smooth four-manifolds”, Adv. Math., 202:2 (2006), 326–400 | DOI | MR | Zbl
[56] P. Ozsváth, Z. Szabó, “Heegaard diagrams and Floer homology”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 1083–1099 | MR | Zbl
[57] P. Ozsváth, Z. Szabó, “Knot Floer homology and integer surgeries”, Algebr. Geom. Topol., 8:1 (2008), 101–153 | DOI | MR | Zbl
[58] P. Ozsváth, Z. Szabó, “Link Floer homology and the Thurston norm”, J. Amer. Math. Soc., 21:3 (2008), 671–709 | DOI | MR | Zbl
[59] P. Ozsváth, Z. Szabó, “Holomorphic disks, link invariants and the multi-variable Alexander polynomial”, Algebr. Geom. Topol., 8:2 (2008), 615–692 | DOI | MR | Zbl
[60] V. V. Prasolov, A. B. Sossinsky, Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology, Transl. Math. Monogr., 154, Amer. Math. Soc., Providence, RI, 1997, viii+239 pp. | MR | Zbl
[61] S. D. Rasmussen, “L-space intervals for graph manifolds and cables”, Compos. Math., 153:5 (2017), 1008–1049 | DOI | MR | Zbl
[62] J. Rasmussen, S. D. Rasmussen, “Floer simple manifolds and L-space intervals”, Adv. Math., 322 (2017), 738–805 | DOI | MR | Zbl
[63] J. Rasmussen, L. Watson, Floer Homology and low-dimensional topology, 2014, 64 pp. http://www.tcd.ie/Hamilton/events/gt/gt2014/notes.pdf
[64] K. Reidemeister, “Zur dreidimensionalen Topologie”, Abh. Math. Sem. Univ. Hamburg, 9:1 (1933), 189–194 | DOI | MR | Zbl
[65] M. Scharlemann, “Heegaard splittings of compact 3-manifolds”, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 921–953 | MR | Zbl
[66] J. Schultens, Introduction to 3-manifolds, Grad. Stud. Math., 151, Amer. Math. Soc., Providence, RI, 2014, x+286 pp. | DOI | MR | Zbl
[67] R. Seroul, “Anneau de cohomologie entière et $KU^*$-théorie d'un produit symétrique d'une surface de Riemann”, Publ. Dep. Math. (Lyon), 9:4 (1972), 27–66 | MR | Zbl
[68] J. Singer, “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35:1 (1933), 88–111 | DOI | MR | Zbl
[69] P. A. Smith, “Manifolds with abelian fundamental groups”, Ann. of Math. (2), 37:3 (1936), 526–533 | DOI | MR | Zbl
[70] W. P. Thurston, “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, No 339, Amer. Math. Soc., Providence, RI, 1986, i-vi, 99–130 | MR | Zbl
[71] V. Turaev, “Torsion invariants of $\mathrm{Spin}^c$-structures on 3-manifolds”, Math. Res. Lett., 4:5 (1997), 679–695 | DOI | MR | Zbl
[72] A. H. Wallace, “Modifications and cobounding manifolds”, Canad. J. Math., 12 (1960), 503–528 | DOI | MR | Zbl