Introduction to Heegaard Floer homology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 1-35
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Heegaard Floer homology is an invariant of knots, links, and 3-manifolds introduced by Ozsváth and Szabó about 15 years ago. This survey defines Heegaard Floer homology and describes its basic properties. Also discussed is the relation between Heegaard Floer homology and invariants of singularities of curves and surfaces. Bibliography: 72 titles.
Keywords: knots, links, 3-manifolds, plane curve singularities, Heegaard Floer homology.
Mots-clés : Alexander polynomial
@article{RM_2019_74_1_a0,
     author = {E. A. Gorsky},
     title = {Introduction to {Heegaard} {Floer} homology},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--35},
     year = {2019},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/}
}
TY  - JOUR
AU  - E. A. Gorsky
TI  - Introduction to Heegaard Floer homology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 1
EP  - 35
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/
LA  - en
ID  - RM_2019_74_1_a0
ER  - 
%0 Journal Article
%A E. A. Gorsky
%T Introduction to Heegaard Floer homology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 1-35
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/
%G en
%F RM_2019_74_1_a0
E. A. Gorsky. Introduction to Heegaard Floer homology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 74 (2019) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/RM_2019_74_1_a0/

[1] V. I. Arnol'd, “Characteristic class entering in quantization conditions”, Funct. Anal. Appl., 1:1 (1967), 1–13 | DOI | MR | Zbl

[2] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl

[3] M. F. Atiyah, R. Bott, A. Shapiro, “Clifford modules”, Topology, 3, suppl. 1 (1964), 3–38 | DOI | MR | Zbl

[4] M. Borodzik, M. Hedden, C. Livingston, “Plane algebraic curves of arbitrary genus via Heegaard Floer homology”, Comment. Math. Helv., 92:2 (2017), 215–256 | DOI | MR | Zbl

[5] M. Borodzik, C. Livingston, “Heegaard Floer homology and rational cuspidal curves”, Forum Math. Sigma, 2 (2014), e28, 23 pp. | DOI | MR | Zbl

[6] M. Borodzik, C. Livingston, “Semigroups, $d$-invariants and deformations of cuspidal singular points of plane curves”, J. Lond. Math. Soc. (2), 93:2 (2016), 439–463 | DOI | MR | Zbl

[7] S. Boyer, A. Clay, “Foliations, orders, representations, L-spaces and graph manifolds”, Adv. Math., 310 (2017), 159–234 | DOI | MR | Zbl

[8] S. Boyer, C. McA. Gordon, L. Watson, “On L-spaces and left-orderable fundamental groups”, Math. Ann., 356:4 (2013), 1213–1245 | DOI | MR | Zbl

[9] S. Boyer, D. Rolfsen, B. Wiest, “Orderable 3-manifold groups”, Ann. Inst. Fourier (Grenoble), 55:1 (2005), 243–288 | DOI | MR | Zbl

[10] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 125–156 | DOI | MR | Zbl

[11] P. Dehornoy, “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 345:1 (1994), 115–150 | DOI | MR | Zbl

[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, Panor. Synthèses, 14, Soc. Math. France, Paris, 2002, xiv+190 pp. | MR | Zbl

[13] S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, J. Differential Geom., 18:2 (1983), 279–315 | DOI | MR | Zbl

[14] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp. | MR | Zbl

[15] Ya. Eliashberg, L. Traynor (eds.), Symplectic geometry and topology, Lecture notes from the graduate summer school program (Park City, UT, USA, 1997), IAS/Park City Math. Ser., 7, Amer. Math. Soc., Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999, xiv+430 pp. | MR | Zbl

[16] N. D. Elkies, “A characterization of the $\mathbb{Z}^n$ lattice”, Math. Res. Lett., 2:3 (1995), 321–326 | DOI | MR | Zbl

[17] J. Fernández de Bobadilla, I. Luengo-Velasco, A. Melle-Hernández, A. Némethi, “On rational cuspidal projective plane curves”, Proc. London Math. Soc. (3), 92:1 (2006), 99–138 | DOI | MR | Zbl

[18] P. Ghiggini, “Knot Floer homology detects genus-one fibred knots”, Amer. J. Math., 130:5 (2008), 1151–1169 | DOI | MR | Zbl

[19] E. Gorsky, A. Némethi, “Lattice and Heegaard Floer homologies of algebraic links”, Int. Math. Res. Not. IMRN, 2015:23 (2015), 12737–12780 | DOI | MR | Zbl

[20] E. Gorsky, A. Némethi, “Links of plane curve singularities are $L$-space links”, Algebr. Geom. Topol., 16:4 (2016), 1905–1912 | DOI | MR | Zbl

[21] H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146:4 (1962), 331–368 | DOI | MR | Zbl

[22] D. V. Gugnin, On integral cohomology ring of symmetric products, 2017 (v1 – 2015), 17 pp., arXiv: 1502.01862

[23] A. Haefliger, “Sur l'extension du groupe structural d'un espace fibré”, C. R. Acad. Sci. Paris, 243 (1956), 558–560 | MR | Zbl

[24] J. Hanselman, “Bordered Heegaard Floer homology and graph manifolds”, Algebr. Geom. Topol., 16:6 (2016), 3103–3166 | DOI | MR | Zbl

[25] J. Hanselman, J. Rasmussen, S. D. Rasmussen, L. Watson, Taut foliations on graph manifolds, 2015, 9 pp., arXiv: 1508.05911

[26] J. Hom, “A note on the concordance invariants epsilon and upsilon”, Proc. Amer. Math. Soc., 144:2 (2016), 897–902 | DOI | MR | Zbl

[27] J. Hom, Ç. Karakurt, T. Lidman, “Surgery obstructions and Heegaard Floer homology”, Geom. Topol., 20:4 (2016), 2219–2251 | DOI | MR | Zbl

[28] H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608 | DOI | MR | Zbl

[29] H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry, Princeton Math. Ser., 38, Princeton Univ. Press, Princeton, NJ, 1989, xii+427 pp. | MR | Zbl

[30] W. B. R. Lickorish, “A representation of orientable combinatorial 3-manifolds”, Ann. of Math. (2), 76:3 (1962), 531–540 | DOI | MR | Zbl

[31] P. A. Linnell, “Left ordered amenable and locally indicable groups”, J. Lond. Math. Soc. (2), 60:1 (1999), 133–142 | DOI | MR | Zbl

[32] P. Lisca, A. I. Stipsicz, “Ozsváth–Szabó invariants and tight contact 3-manifolds. III”, J. Symplectic Geom., 5:4 (2007), 357–384 | DOI | MR | Zbl

[33] B. Liu, Heegaard Floer homology of $L$-space links with two components, 2017, 23 pp., arXiv: 1704.02538

[34] Y. Liu, “$L$-space surgeries on links”, Quantum Topol., 8:3 (2017), 505–570 | DOI | MR | Zbl

[35] I. G. MacDonald, “Symmetric products of an algebraic curve”, Topology, 1 (1962), 319–343 | DOI | MR | Zbl

[36] C. Manolescu, “$\operatorname{Pin}(2)$-equivariant Seiberg–Witten Floer homology and the triangulation conjecture”, J. Amer. Math. Soc., 29:1 (2016), 147–176 | DOI | MR | Zbl

[37] C. Manolescu, P. Ozsváth, Heegaard Floer homology and integer surgeries on links, 2017 (v1 – 2010), 231 pp., arXiv: 1011.1317

[38] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | MR | Zbl | Zbl

[39] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1998, x+486 pp. | MR | Zbl

[40] A. Némethi, “On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds”, Geom. Topol., 9 (2005), 991–1042 | DOI | MR | Zbl

[41] A. Némethi, “Links of rational singularities, L-spaces and LO fundamental groups”, Invent. Math., 210:1 (2017), 69–83 | DOI | MR | Zbl

[42] Y. Ni, “Knot Floer homology detects fibred knots”, Invent. Math., 170:3 (2007), 577–608 | DOI | MR | Zbl

[43] Y. Ni, Z. Wu, “Heegaard Floer correction terms and rational genus bounds”, Adv. Math., 267 (2014), 360–380 | DOI | MR | Zbl

[44] P. Ozsváth, A. Stipsicz, Z. Szabó, “Concordance homomorphisms from knot Floer homology”, Adv. Math., 315 (2017), 366–426 | DOI | MR | Zbl

[45] P. Ozsváth, Z. Szabó, “Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary”, Adv. Math., 173:2 (2003), 179–261 | DOI | MR | Zbl

[46] P. Ozsváth, Z. Szabó, “On the Floer homology of plumbed three-manifolds”, Geom. Topol., 7 (2003), 185–224 | DOI | MR | Zbl

[47] P. Ozsváth, Z. Szabó, “Heegaard Floer homology and alternating knots”, Geom. Topol., 7 (2003), 225–254 | DOI | MR | Zbl

[48] P. Ozsváth, Z. Szabó, “Knot Floer homology and the four-ball genus”, Geom. Topol., 7 (2003), 615–639 | DOI | MR | Zbl

[49] P. Ozsváth, Z. Szabó, “Holomorphic disks and genus bounds”, Geom. Topol., 8 (2004), 311–334 | DOI | MR | Zbl

[50] P. Ozsváth, Z. Szabó, “Holomorphic disks and knot invariants”, Adv. Math., 186:1 (2004), 58–116 | DOI | MR | Zbl

[51] P. Ozsváth, Z. Szabó, “Holomorphic disks and topological invariants for closed three-manifolds”, Ann. of Math. (2), 159:3 (2004), 1027–1158 | DOI | MR | Zbl

[52] P. Ozsváth, Z. Szabó, “Holomorphic disks and three-manifold invariants: properties and applications”, Ann. of Math. (2), 159:3 (2004), 1159–1245 | DOI | MR | Zbl

[53] P. Ozsváth, Z. Szabó, “Heegaard Floer homology and contact structures”, Duke Math. J., 129:1 (2005), 39–61 | DOI | MR | Zbl

[54] P. Ozsváth, Z. Szabó, “On knot Floer homology and lens space surgeries”, Topology, 44:6 (2005), 1281–1300 | DOI | MR | Zbl

[55] P. Ozsváth, Z. Szabó, “Holomorphic triangles and invariants for smooth four-manifolds”, Adv. Math., 202:2 (2006), 326–400 | DOI | MR | Zbl

[56] P. Ozsváth, Z. Szabó, “Heegaard diagrams and Floer homology”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 1083–1099 | MR | Zbl

[57] P. Ozsváth, Z. Szabó, “Knot Floer homology and integer surgeries”, Algebr. Geom. Topol., 8:1 (2008), 101–153 | DOI | MR | Zbl

[58] P. Ozsváth, Z. Szabó, “Link Floer homology and the Thurston norm”, J. Amer. Math. Soc., 21:3 (2008), 671–709 | DOI | MR | Zbl

[59] P. Ozsváth, Z. Szabó, “Holomorphic disks, link invariants and the multi-variable Alexander polynomial”, Algebr. Geom. Topol., 8:2 (2008), 615–692 | DOI | MR | Zbl

[60] V. V. Prasolov, A. B. Sossinsky, Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology, Transl. Math. Monogr., 154, Amer. Math. Soc., Providence, RI, 1997, viii+239 pp. | MR | Zbl

[61] S. D. Rasmussen, “L-space intervals for graph manifolds and cables”, Compos. Math., 153:5 (2017), 1008–1049 | DOI | MR | Zbl

[62] J. Rasmussen, S. D. Rasmussen, “Floer simple manifolds and L-space intervals”, Adv. Math., 322 (2017), 738–805 | DOI | MR | Zbl

[63] J. Rasmussen, L. Watson, Floer Homology and low-dimensional topology, 2014, 64 pp. http://www.tcd.ie/Hamilton/events/gt/gt2014/notes.pdf

[64] K. Reidemeister, “Zur dreidimensionalen Topologie”, Abh. Math. Sem. Univ. Hamburg, 9:1 (1933), 189–194 | DOI | MR | Zbl

[65] M. Scharlemann, “Heegaard splittings of compact 3-manifolds”, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 921–953 | MR | Zbl

[66] J. Schultens, Introduction to 3-manifolds, Grad. Stud. Math., 151, Amer. Math. Soc., Providence, RI, 2014, x+286 pp. | DOI | MR | Zbl

[67] R. Seroul, “Anneau de cohomologie entière et $KU^*$-théorie d'un produit symétrique d'une surface de Riemann”, Publ. Dep. Math. (Lyon), 9:4 (1972), 27–66 | MR | Zbl

[68] J. Singer, “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35:1 (1933), 88–111 | DOI | MR | Zbl

[69] P. A. Smith, “Manifolds with abelian fundamental groups”, Ann. of Math. (2), 37:3 (1936), 526–533 | DOI | MR | Zbl

[70] W. P. Thurston, “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, No 339, Amer. Math. Soc., Providence, RI, 1986, i-vi, 99–130 | MR | Zbl

[71] V. Turaev, “Torsion invariants of $\mathrm{Spin}^c$-structures on 3-manifolds”, Math. Res. Lett., 4:5 (1997), 679–695 | DOI | MR | Zbl

[72] A. H. Wallace, “Modifications and cobounding manifolds”, Canad. J. Math., 12 (1960), 503–528 | DOI | MR | Zbl