Toric Landau–Ginzburg models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 1033-1118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This review of the theory of toric Landau–Ginzburg models describes an effective approach to mirror symmetry for Fano varieties. It focuses mainly on the cases of dimensions 2 and 3, as well as on the case of complete intersections in weighted projective spaces and Grassmannians. Conjectures that relate invariants of Fano varieties and their Landau–Ginzburg models, such as the Katzarkov–Kontsevich–Pantev conjectures, are also studied. Bibliography: 89 titles.
Keywords: toric Landau–Ginzburg models, mirror symmetry, toric geometry, Fano varieties.
@article{RM_2018_73_6_a1,
     author = {V. V. Przyjalkowski},
     title = {Toric {Landau{\textendash}Ginzburg} models},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1033--1118},
     year = {2018},
     volume = {73},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Toric Landau–Ginzburg models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 1033
EP  - 1118
VL  - 73
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/
LA  - en
ID  - RM_2018_73_6_a1
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Toric Landau–Ginzburg models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 1033-1118
%V 73
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/
%G en
%F RM_2018_73_6_a1
V. V. Przyjalkowski. Toric Landau–Ginzburg models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 1033-1118. http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/

[1] M. Abouzaid, “Morse homology, tropical geometry, and homological mirror symmetry for toric varieties”, Selecta Math. (N. S.), 15:2 (2009), 189–270 | DOI | MR | Zbl

[2] L. A. Aizenberg, A. K. Tsikh, A. P. Yuzhakov, “Multidimensional residues and applications”, Several complex variables II. Function theory in classical domains. Complex potential theory, Encyclopaedia Math. Sci., 8, Springer, Berlin, 1994, 1–58 ; “Mnogomernye vychety i ikh prilozheniya”, Kompleksnyi analiz – mnogie peremennye – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 8, VINITI, M., 1985 ; Рђ. Рџ. Южаков, Гл. 1. РњРμтоды вычислРμРЅРёРNo РјРЅРѕРіРѕРјРμСЂРЅС‹С... вычРμтов, 6–28 ; Р›. Рђ. РђРNoР·РμРЅР±РμСЂРі, Гл. 2. РњРЅРѕРіРѕРјРμСЂРЅС‹РNo логарифмичРμСЃРєРёРNo вычРμС‚ Рё РμРіРѕ приложРμРЅРёСЏ, 29–45 ; Рђ. Рљ. ЦиС..., Гл. 3. ВычРμС‚ ГротРμРЅРґРёРєР° Рё РμРіРѕ приложРμРЅРёСЏ Рє алгРμбраичРμСЃРєРѕРNo РіРμРѕРјРμтрии, 45–64 | DOI | MR | Zbl

[3] M. Akhtar, T. Coates, S. Galkin, A. M. Kasprzyk, “Minkowski polynomials and mutations”, SIGMA, 8 (2012), 094, 17 pp. | DOI | MR | Zbl

[4] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves”, Invent. Math., 166:3 (2006), 537–582 | DOI | MR | Zbl

[5] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl

[6] V. V. Batyrev, “Birational Calabi–Yau $n$-folds have equal Betti numbers”, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, 1–11 | DOI | MR | Zbl

[7] V. V. Batyrev, “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano conference (Torino, 2002), Univ. Torino, Torino, 2004, 109–122 | MR | Zbl

[8] V. V. Batyrev, L. A. Borisov, “Mirror duality and string-theoretic Hodge numbers”, Invent. Math., 126:1 (1996), 183–203 | DOI | MR | Zbl

[9] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514:3 (1998), 640–666 | DOI | MR | Zbl

[10] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184:1 (2000), 1–39 | DOI | MR | Zbl

[11] S.-M. Belcastro, “Picard lattices of families of K3 surfaces”, Comm. Algebra, 30:1 (2002), 61–82 | DOI | MR | Zbl

[12] A. Bertram, I. Ciocan-Fontanine, B. Kim, “Two proofs of a conjecture of Hori and Vafa”, Duke Math. J., 126:1 (2005), 101–136 | DOI | MR | Zbl

[13] P. Candelas, X. C. de la Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359:1 (1991), 21–74 | DOI | MR | Zbl

[14] I. Cheltsov, L. Katzarkov, V. Przyjalkowski, “Birational geometry via moduli spaces”, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, 93–132 | DOI | MR | Zbl

[15] I. Cheltsov, V. Przyjalkowski, Katzarkov–Kontsevich–Pantev conjecture for Fano threefolds, 2018, 178 pp., arXiv: 1809.09218

[16] J.-J. Chen, J. A. Chen, M. Chen, “On quasismooth weighted complete intersections”, J. Algebraic Geom., 20:2 (2011), 239–262 | DOI | MR | Zbl

[17] J. A. Christophersen, N. O. Ilten, “Degenerations to unobstructed Fano Stanley–Reisner schemes”, Math. Z., 278:1-2 (2014), 131–148 | DOI | MR | Zbl

[18] A. Clingher, C. F. Doran, “Modular invariants for lattice polarized K3 surfaces”, Michigan Math. J., 55:2 (2007), 355–393 | DOI | MR | Zbl

[19] T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Fano varieties and extremal Laurent polynomials, A collaborative research blog,\par http://coates.ma.ic.ac.uk/fanosearch

[20] T. Coates, A. Corti, S. Galkin, A. Kasprzyk, “Quantum periods for 3-dimensional Fano manifolds”, Geom. Topol., 20:1 (2016), 103–256 | DOI | MR | Zbl

[21] T. Coates, A. Kasprzyk, T. Prince, “Four-dimensional Fano toric complete intersections”, Proc. A, 471:2175 (2015), 20140704, 14 pp. | DOI | MR | Zbl

[22] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl

[23] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl

[24] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[25] P. del Pezzo, “Sulle superficie dell'$n^{\mathrm{mo}}$ ordine immerse nello spazio di $n$ dimensioni”, Rend. Circ. Mat. Palermo, 1:1 (1887), 241–271 | DOI | Zbl

[26] P. Deligne, L. Illusie, “Relèvements modulo $p^2$ et décomposition du complexe de de Rham”, Invent. Math., 89:2 (1987), 247–270 | DOI | MR | Zbl

[27] A. Dimca, “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 1986:366 (1986), 184–193 | DOI | MR | Zbl

[28] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Berlin, Springer, 1982, 34–71 | DOI | MR | Zbl

[29] I. V. Dolgachev, “Mirror symmetry for lattice polarized $\text{K3}$ surfaces”, J. Math. Sci. (N. Y.), 81:3 (1996), 2599–2630 | DOI | MR | Zbl

[30] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[31] C. F. Doran, A. Harder, “Toric degenerations and the Laurent polynomials related to Givental's Landau–Ginzburg models”, Canad. J. Math., 68:4 (2016), 784–815 | DOI | MR | Zbl

[32] C. Doran, A. Harder, L. Katzarkov, J. Lewis, V. Przyjalkowski, Modularity of Fano threefolds, preprint

[33] C. F. Doran, A. Harder, A. Y. Novoseltsev, A. Thompson, Calabi–Yau threefolds fibred by high rank lattice polarized K3 surfaces, 2018 (v1 – 2017), 34 pp., arXiv: 1701.03279

[34] T. Eguchi, K. Hori, C.-S. Xiong, “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12:9 (1997), 1743–1782 | DOI | MR | Zbl

[35] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[36] S. Galkin, Small toric degenerations of Fano threefolds, 2018, 15 pp., arXiv: 1809.02705

[37] A. Gathmann, “Absolute and relative Gromov–Witten invariants of very ample hypersurfaces”, Duke Math. J., 115:2 (2002), 171–203 | DOI | MR | Zbl

[38] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 103–115 | DOI | MR | Zbl

[39] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | MR | Zbl

[40] V. V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 | DOI | MR | Zbl

[41] M. Gross, L. Katzarkov, H. Ruddat, “Towards mirror symmetry for varieties of general type”, Adv. Math., 308 (2017), 208–275 | DOI | MR | Zbl

[42] A. Harder, The geometry of Landau–Ginzburg models, PhD thesis, 2016, 225 pp., \par https://era.library.ualberta.ca/files/c0z708w408#.WB93zdKLRdg

[43] A. Harder, Hodge numbers of Landau–Ginzburg models, 2017, 22 pp., arXiv: 1708.01174

[44] K. Hori, C. Vafa, Mirror symmetry, 2000, 91 pp., arXiv: hep-th/0002222

[45] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | DOI | MR | Zbl

[46] A. Iliev, L. Katzarkov, V. Przyjalkowski, “Double solids, categories and non-rationality”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 145–173 | DOI | MR | Zbl

[47] N. Ilten, A. Kasprzyk, L. Katzarkov, V. Przyjalkowski, D. Sakovics, Projecting Fanos in the mirror, preprint

[48] N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR | Zbl

[49] N. O. Ilten, R. Vollmert, “Deformations of rational $T$-varieties”, J. Algebraic Geom., 21:3 (2012), 531–562 ; II, 42:3 (1978), 506–549 | DOI | MR | Zbl | MR | Zbl

[50] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 ; II, 12:3 (1978), 469–506 | DOI | DOI | MR | MR | Zbl | Zbl

[51] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | MR | Zbl

[52] V. A. Iskovskikh, I. R. Shafarevich, “Algebraic surfaces”, Algebraic geometry II, Encycl. Math. Sci., 35, 1996, 127–254 | DOI | MR | MR | Zbl

[53] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl

[54] A. Kasprzyk, K. Tveiten, Maximally mutable Laurent polynomials, preprint

[55] N. M. Katz, “Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin”, Inst. Hautes Études Sci. Publ. Math., 39 (1970), 175–232 | DOI | MR | Zbl

[56] L. Katzarkov, M. Kontsevich, T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105:1 (2017), 55–117 | DOI | MR | Zbl

[57] L. Katzarkov, V. Przyjalkowski, “Generalized homological mirror symmetry and cubics”, Mnogomernaya algebraicheskaya geometriya, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Vasiliya Alekseevicha Iskovskikh, Tr. MIAN, 264, MAIK “Nauka/Interperiodika”, M., 2009, 94–102 | MR | Zbl

[58] L. Katzarkov, V. Przyjalkowski, “Landau–Ginzburg models – old and new”, Proceedings of the 18th Gökova geometry–topology conference (Gökova, 2011), Int. Press, Somerville, MA, 2012, 97–124 | MR | Zbl

[59] K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626 | DOI | MR | Zbl

[60] M. Kreuzer, H. Skarke, “Reflexive polyhedra, weights and toric Calabi–Yau fibrations”, Rev. Math. Phys., 14:4 (2002), 343–374 | DOI | MR | Zbl

[61] A. Kuznetsov, Homological projective duality for Grassmannians of lines, 2006, 36 pp., arXiv: math/0610957

[62] Z. Li, “On the birationality of complete intersections associated to nef-partitions”, Adv. Math., 299 (2016), 71–107 | DOI | MR | Zbl

[63] V. Lunts, V. Przyjalkowski, “Landau–Ginzburg Hodge numbers for mirrors of del Pezzo surfaces”, Adv. Math., 329 (2018), 189–216 | DOI | MR | Zbl

[64] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999, xiv+303 pp. | DOI | MR | Zbl

[65] R. Marsh, K. Rietsch, The $B$-model connection and mirror symmetry for Grassmannians, 2015 (v1 – 2013), 88 pp., arXiv: 1307.1085

[66] R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp. | MR | Zbl

[67] S. Mori, S. Mukai, “Classification of Fano $3$-folds with $B_{2}\geqslant 2$”, Manuscripta Math., 36:2 (1981/82), 147–162 ; “Erratum”, 110:3 (2003), 407 | DOI | MR | Zbl | DOI

[68] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[69] M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395 | DOI | MR | Zbl

[70] T. Prince, Applications of mirror symmetry to the classification of Fano varieties, PhD thesis, Imperial College, London, 2016, 171 pp.,\par {8pt}\selectfont https://spiral.imperial.ac.uk/bitstream/10044/1/43374/1/Prince-T-2016-PhD-Thesis.pdf} \fontsize{8.5

[71] T. Prince, “Efficiently computing torus charts in Landau–Ginzburg models of complete intersections in Grassmannians of planes”, Bull. Korean Math. Soc., 54:5 (2017), 1719–1724 | DOI | MR | Zbl

[72] V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | DOI | MR | Zbl

[73] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl

[74] V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272 | DOI | DOI | MR | Zbl

[75] V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2007), 713–728 | DOI | MR | Zbl

[76] V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl

[77] V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794 | DOI | DOI | MR | Zbl

[78] V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013 | DOI | DOI | MR | Zbl

[79] V. V. Przyjalkowski, “On the Calabi–Yau compactifications of toric Landau–Ginzburg models for Fano complete intersections”, Math. Notes, 103:1 (2018), 104–110 | DOI | DOI | MR | Zbl

[80] V. V. Przhyjalkowski, I. A. Chel'tsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | DOI | MR | Zbl

[81] V. V. Przyjalkowski, C. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians”, Russian Math. Surveys, 69:6 (2014), 1129–1131 | DOI | DOI | MR | Zbl

[82] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[83] V. V. Przyjalkowski, C. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians”, Proc. Steklov Inst. Math., 290 (2015), 91–102 | DOI | DOI | MR | Zbl

[84] V. Przyjalkowski, C. Shramov, “Bounds for smooth Fano weighted complete intersections”, Compos. Math. (to appear); 2016, 27 pp., arXiv: 1611.09556

[85] V. Przyjalkowski, C. Shramov, “Nef partitions for codimension $2$ weighted complete intersections”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 19 (2019) (to appear) ; (2017), 17 pp., arXiv: 1702.00431 | DOI

[86] V. Przyjalkowski, C. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes”, Bull. Korean Math. Soc., 54:5 (2017), 1527–1575 | DOI | MR | Zbl

[87] V. Przyjalkowski, C. Shramov, Hodge complexity for weighted complete intersections, 2018, 23 pp., arXiv: 1801.10489

[88] V. Przhiyalkovskii, K. Shramov, Vzveshennye polnye peresecheniya Fano, preprint

[89] N. Sheridan, “Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space”, Invent. Math., 199:1 (2015), 1–186 | DOI | MR | Zbl