Toric Landau--Ginzburg models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 1033-1118

Voir la notice de l'article provenant de la source Math-Net.Ru

This review of the theory of toric Landau–Ginzburg models describes an effective approach to mirror symmetry for Fano varieties. It focuses mainly on the cases of dimensions 2 and 3, as well as on the case of complete intersections in weighted projective spaces and Grassmannians. Conjectures that relate invariants of Fano varieties and their Landau–Ginzburg models, such as the Katzarkov–Kontsevich–Pantev conjectures, are also studied. Bibliography: 89 titles.
Keywords: toric Landau–Ginzburg models, mirror symmetry, toric geometry, Fano varieties.
@article{RM_2018_73_6_a1,
     author = {V. V. Przyjalkowski},
     title = {Toric {Landau--Ginzburg} models},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1033--1118},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Toric Landau--Ginzburg models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 1033
EP  - 1118
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/
LA  - en
ID  - RM_2018_73_6_a1
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Toric Landau--Ginzburg models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 1033-1118
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/
%G en
%F RM_2018_73_6_a1
V. V. Przyjalkowski. Toric Landau--Ginzburg models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 1033-1118. http://geodesic.mathdoc.fr/item/RM_2018_73_6_a1/