The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 941-1031
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of analytic continuation is considered for the Lauricella function $F_D^{(N)}$, a generalized hypergeometric functions of $N$ complex variables. For an arbitrary $N$ a complete set of formulae is given for its analytic continuation outside the boundary of the unit polydisk, where it is defined originally by an $N$-variate hypergeometric series. Such formulae represent $F_D^{(N)}$ in suitable subdomains of $\mathbb{C}^N$ in terms of other generalized hypergeometric series, which solve the same system of partial differential equations as $F_D^{(N)}$. These hypergeometric series are the $N$-dimensional analogue of Kummer's solutions in the theory of Gauss's classical hypergeometric equation. The use of this function in the theory of the Riemann–Hilbert problem and its applications to the Schwarz–Christoffel parameter problem and problems in plasma physics are also discussed. Bibliography: 163 titles.
Keywords: multivariate hypergeometric functions, systems of partial differential equations, analytic continuation, Riemann–Hilbert problem, Schwarz–Christoffel integral, crowding problem, magnetic reconnection phenomenon.
@article{RM_2018_73_6_a0,
     author = {S. I. Bezrodnykh},
     title = {The {Lauricella} hypergeometric function $F_D^{(N)}$, the {Riemann{\textendash}Hilbert} problem, and some applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {941--1031},
     year = {2018},
     volume = {73},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
TI  - The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 941
EP  - 1031
VL  - 73
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/
LA  - en
ID  - RM_2018_73_6_a0
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%T The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 941-1031
%V 73
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/
%G en
%F RM_2018_73_6_a0
S. I. Bezrodnykh. The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 941-1031. http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/

[1] L. Pochhammer, “Über hypergeometrische Funktionen $n^{\mathrm{ter}}$ Ordnungen”, J. Reine Angew. Math., 1870:71 (1870), 316–352 | DOI | MR | Zbl

[2] P. Appel, “Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles”, C. R. Acad. Sci. Paris, 90 (1880), 296–298 | Zbl

[3] P. Appel, “Sur les fonctions hypergéométriques de deux variables”, J. Math. Pures Appl. (3), 8 (1882), 173–216 | Zbl

[4] E. Picard, “Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques”, Ann. Sci. École Norm. Sup. (2), 10:2 (1881), 305–322 | DOI | MR | Zbl

[5] J. Horn, “Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34:4 (1889), 544–600 | DOI | MR | Zbl

[6] G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Mat. Palermo, 7 (1893), 111–158 | DOI | Zbl

[7] P. Appel, J. Kampé de Feriet, Fonctions hypergéométriques et hypersphériques, Gauthier-Villars, Paris, 1926, vii+434 pp. | Zbl

[8] O. Ore, “Sur la forme de fonctions hypergéométriques de plusieurs variables”, J. Math. Pures Appl. (9), 9:4 (1930), 311–326 | Zbl

[9] J. Horn, “Hypergeometrische Funktionen zweier Veränderlichen”, Math. Ann., 105:1 (1931), 381–407 | DOI | MR | Zbl

[10] A. Erdélyi, “Hypergeometric functions of two variables”, Acta Math., 83 (1950), 131–164 | DOI | MR | Zbl

[11] P. O. M. Olsson, “Integration of the partial differential equations for the hypergeometric functions $F_1$ and $F_D$ of two and more variables”, J. Math. Phys., 5:3 (1964), 420–430 | DOI | MR | Zbl

[12] S. G. Gindikin, “Analysis in homogeneous domains”, Russian Math. Surveys, 19:4 (1964), 1–89 | DOI | MR | Zbl

[13] H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1976, 312 pp. | MR | Zbl

[14] K. Aomoto, “On the structure of integrals of power products of linear functions”, Sci. Papers College Gen. Ed. Univ. Tokyo, 27:2 (1977), 49–61 | MR | Zbl

[15] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York, 1985, 425 pp. | MR | Zbl

[16] I. M. Gel'fand, “General theory of hypergeometric functions”, Soviet Math. Dokl., 33:3 (1986), 573–577 | MR | Zbl

[17] P. Deligne, G. D. Mostow, “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5–89 | DOI | MR | Zbl

[18] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI | MR | Zbl

[19] M. Yoshida, Fuchsian differential equations. With special emphasis on the Gauss–Schwarz theory, Aspects Math., E11, Friedr. Vieweg Sohn, Braunschweig, 1987, xiv+215 pp. | DOI | MR | Zbl

[20] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl

[21] B. Dwork, Generalized hypergeometric functions, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1990, vi+188 pp. | MR | Zbl

[22] M. Sato, “Theory of prehomogeneous vector spaces (algebraic part) – the English translation of Sato's lecture from Shintani's note”, Notes by T. Shintani. Transl. from the Japan. by M. Muro, Nagoya Math. J., 120 (1990), 1–34 | DOI | MR | Zbl

[23] K. Iwasaki, H. Kimura, Sh. Shimomura, M. Yoshida, From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991, xii+347 pp. | DOI | MR | Zbl

[24] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl

[25] V. A. Vassiliev, Applied Picard–Lefschetz theory, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2002, xii+324 pp. | DOI | MR | Zbl

[26] R.-P. Holzapfel, A. M. Uludağ, M. Yoshida (eds.), Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Birkhäuser Verlag, Basel, 2007, viii+437 pp. | DOI | MR | Zbl

[27] K. Aomoto, M. Kita, Theory of hypergeometric functions, Springer Monogr. Math., Springer-Verlag, Tokyo, 2011, xvi+317 pp. | DOI | MR | Zbl

[28] T. M. Sadykov, A. K. Tsikh, Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014, 408 pp.

[29] T. M. Sadykov, S. Tanabé, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262 | DOI | DOI | MR | Zbl

[30] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[31] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl

[32] W. Miller, Jr., “Lie theory and the Lauricella functions $F_D$”, J. Math. Phys., 13 (1972), 1393–1399 | DOI | MR | Zbl

[33] H. J. Haubold, A. M. Mathai, “On the nuclear energy generation rate in a simple analytic stellar model”, Ann. Physik (7), 496:6 (1984), 372–379 | DOI

[34] I. G. Kaplan, G. L. Yudin, “Nonrelativistic Compton effect on a bound electron”, Soviet Physics JETP, 42:1 (1975), 4–10

[35] P. Martínez-González, A. Zarzo, “Higher order hypergeometric Lauricella function and zero asymptotics of orthogonal polynomials”, J. Comput. Appl. Math., 233:6 (2010), 1577–1583 | DOI | MR | Zbl

[36] N. Borghini, C. Gombeaud, “Anisotropic flow far from equilibrium”, Eur. Phys. J. C, 71 (2011), 1612, 13 pp. | DOI

[37] G. V. Kraniotis, “Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes”, Classical Quantum Gravity, 24:7 (2007), 1775–1808 | DOI | MR | Zbl

[38] G. V. Kraniotis, General relativity, Lauricella's hypergeometric function $F_D$ and the theory of braids, 2007, 16 pp., arXiv: 0709.3391

[39] K. Peppas, “Performance analysis of maximal ratio diversity receivers over generalized fading channels”, Advanced trends in wireless communications, InTech, Rijeka, 2011, 47–64 | DOI

[40] A. Lijoi, E. Regazzini, “Means of a Dirichlet process and multiple hypergeometric functions”, Ann. Probab., 32:2 (2004), 1469–1495 | DOI | MR | Zbl

[41] S. V. Kerov, N. V. Tsilevich, “The Markov–Krein correspondence in several dimensions”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. VI, Zap. nauch. sem. POMI, 283, POMI, SPb., 2001, 98–122 ; J. Math. Sci. (N. Y.), 121:3 (2004), 2345–2359 | MR | Zbl | DOI

[42] J.-F. Chamayou, J. Wesołowski, “Lauricella and Humbert functions through probabilistic tools”, Integral Transforms Spec. Funct., 20:7 (2009), 529–538 | DOI | MR | Zbl

[43] M. E. H. Ismail, J. Pitman, “Algebraic evaluations of some Euler integrals, duplication formulae for Appell's hypergeometric function $F_1$, and Brownian variations”, Canad. J. Math., 52:5 (2000), 961–981 | DOI | MR | Zbl

[44] A. W. Owen, Interactions in D-brane configurations, PhD thesis, Durham Univ., 2004, x+133 pp. http://etheses.dur.ac.uk/3097/

[45] M. A. I. Flohr, “Logarithmic conformal field theory and Seiberg–Witten models”, Phys. Lett. B, 444:1-2 (1998), 179–189 | DOI | MR

[46] M. Flohr, “Logarithmic conformal field theory or how to compute a torus amplitude on the sphere”, From fields to strings: circumnavigating theoretical physics, v. 2, World Sci. Publ., Singapore, 2005, 1201–1256 | MR | Zbl

[47] N. Akerblom, M. Flohr, “Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas point”, J. High Energy Phys., 2005:2 (2005), 057, 24 pp. | DOI | MR

[48] A. I. Davydychev, “General results for massive $N$-point Feynman diagrams with different masses”, J. Math. Phys., 33:1 (1992), 358–369 | DOI | MR

[49] J. Fleischer, F. Jegerlehner, O. V. Tarasov, “A new hypergeometric representation of one-loop scalar integrals in $d$ dimensions”, Nuclear Phys. B, 672:1-2 (2003), 303–328 | DOI | MR | Zbl

[50] T. Kaneko, Numerical calculation of one-loop integration with hypergeometric functions, talk given at 3rd Computational Particle Physics Workshop – CPP2010 (September 23–25, 2010, KEK, Japan), 2011, 8 pp., arXiv: 1105.2080

[51] V. V. Bytev, M. Yu. Kalmykov, S.-O. Moch, “Hypergeometric functions differential reduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: $F_D$ and $F_S$ Horn-type hypergeometric functions of three variables”, Comput. Phys. Commun., 185:11 (2014), 3041–3058 | DOI | Zbl

[52] E. I. Shifrin, Prostranstvennye zadachi lineinoi mekhaniki razrusheniya, Fizmatlit, M., 2002, 368 pp.

[53] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988, 448 pp.; D. Mumford, Tata lectures on theta, С‚. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 СЃ. ; v. II, Progr. Math., 43, 1984, xiv+272 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[54] Ch. F. Dunkl, D. E. Ramirez, “Algorithm 736: hyperelliptic integrals and the surface measure of ellipsoids”, ACM Trans. Math. Software, 20:4 (1994), 427–435 | DOI | MR

[55] G. M. Scarpello, D. Ritelli, “The hyperelliptic integrals and $\pi$”, J. Number Theory, 129:12 (2009), 3094–3108 | DOI | MR | Zbl

[56] G. M. Scarpello, D. Ritelli, “On computing some special values of multivariate hypergeometric functions”, J. Math. Anal. Appl., 420:2 (2014), 1693–1718 | DOI | MR | Zbl

[57] S. I. Bezrodnykh, “Analytic continuation formulas and Jacobi-type relations for Lauricella function”, Dokl. Math., 93:2 (2016), 129–134 | DOI | DOI | MR | Zbl

[58] S. I. Bezrodnykh, “On the analytic continuation of the Lauricella function $F_D^{(N)}$”, Math. Notes, 100:2 (2016), 318–324 | DOI | DOI | MR | Zbl

[59] S. I. Bezrodnykh, Singulyarnaya zadacha Rimana–Gilberta, gipergeometricheskaya funktsiya Laurichelly i prilozheniya k astrofizike, Diss. ... dokt. fiz.-matem. nauk, FITs IU RAN, M., 2017, 300 pp.

[60] S. I. Bezrodnykh, “Analytic continuation of the Lauricella function $F_D^{(N)}$ with arbitrary number of variables”, Integral Transforms Spec. Funct., 29:1 (2018), 21–42 | DOI | MR | Zbl

[61] S. I. Bezrodnykh, “Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case”, Comput. Math. Math. Phys., 57:4 (2017), 559–589 | DOI | DOI | MR | Zbl

[62] S. I. Bezrodnykh, V. I. Vlasov, “Zadacha Rimana–Gilberta v oblastyakh slozhnoi formy i ee prilozhenie”, Spectral and Evolution Problems, 16 (2006), 51–61

[63] S. I. Bezrodnykh, V. I. Vlasov, “On a new representation for the solution of the Riemann–Hilbert problem”, Math. Notes, 99:6 (2016), 932–937 | DOI | MR | Zbl

[64] S. I. Bezrodnykh, “Finding the coefficients in the new representation of the solution of the Riemann–Hilbert problem using the Lauricella function”, Math. Notes, 101:5 (2017), 759–777 | DOI | DOI | MR | Zbl

[65] S. I. Bezrodnykh, “Sootnoshenie tipa Yakobi dlya obobschennoi gipergeometricheskoi funktsii”, Matematicheskie idei P. L. Chebysheva i ikh prilozhenie k sovremennym problemam estestvoznaniya, Tezisy dokladov (Obninsk, 2006), Obninskii gos. tekh. un-t atomnoi energetiki, Obninsk, 2006, 18–19

[66] S. I. Bezrodnykh, “Jacobi-type differential relations for the Lauricella function $F_D^{(N)}$”, Math. Notes, 99:6 (2016), 821–833 | DOI | DOI | MR | Zbl

[67] S. I. Bezrodnykh, B. V. Somov, V. I. Vlasov, “Generalized analytical models of Syrovatskii's current sheet”, Astron. Lett., 37:2 (2011), 113–130 | DOI

[68] Hj. Mellin, “Über den Zusammenhang zwischen den linearen Differential- und Differenzengleichungen”, Acta Math., 25:1 (1902), 139–164 | DOI | MR | Zbl

[69] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000, viii+254 pp. | DOI | MR | Zbl

[70] J. Stienstra, “GKZ hypergeometric structures”, Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Basel, Birkhäuser, 2007, 313–371 | DOI | MR | Zbl

[71] F. Beukers, “Monodromy of $A$-hypergeometric functions”, J. Reine Angew. Math., 2016:718 (2016), 183–206 ; (2013 (v1 – 2011)), 29 pp., arXiv: 1101.0493v2 | DOI | MR | Zbl

[72] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Generalized Euler integrals and $A$-hypergeometric functions”, Adv. Math., 84:2 (1990), 255–271 | DOI | MR | Zbl

[73] E. E. Kummer, “Über die hypergeometrische Reihe $1+\frac{\alpha\cdot\beta}{1\cdot \gamma} x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot\gamma(\gamma+1)}x^2+ \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\gamma(\gamma+1)(\gamma+2)}x^3\cdots\vphantom{\Bigl\}}$”, J. Reine Angew. Math., 1836:15 (1836), 39–83 ; Fortsetzung, 127–172 | DOI | MR | Zbl | DOI | MR | Zbl

[74] B. Riman, “Osnovy obschei teorii funktsii odnoi kompleksnoi peremennoi”, Sochineniya, Gostekhizdat, M., 1948, 49–87; B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen, 1851, 43 pp.; in: Gesammelte mathematische Werke und wissenschaftlicher Nachlass, Teubner, Leipzig, 1876, 3–43 | Zbl

[75] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, 2-e izd., Gostekhizdat, M.–L., 1950, 436 pp. | MR | Zbl

[76] K. Mimachi, T. Sasaki, “Monodromy representations associated with Appel's hypergeometric function $F_1$ using integrals of a multivalued function”, Kyushu J. Math., 66:1 (2012), 89–114 | DOI | MR

[77] K. Matsumoto, “Monodromy and Pfaffian of Lauricella's $F_D$ in terms of the intersection forms of twisted (co)homology groups”, Kyushu J. Math., 67:2 (2013), 367–387 | DOI | MR | Zbl

[78] E. Looijenga, “Uniformization by Lauricella functions – an overview of the theory of Deligne–Mostow”, Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Birkhäuser, Basel, 2007, 207–244 | DOI | MR | Zbl

[79] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl

[80] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377 | DOI | DOI | MR | Zbl

[81] S. P. Suetin, Hermite–Padé polynomials and analytic continuation: new approach and some results, 2018, 63 pp., arXiv: 1806.08735

[82] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Diss. ... dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1990, 402 pp.

[83] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, xiii+330 pp. | DOI | MR | Zbl

[84] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl

[85] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967, x+846 pp. | MR | MR | Zbl | Zbl

[86] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, 2-e izd., Nauka, M., 1977, 407 pp. | MR

[87] L. N. Trefethen, T. A. Driscoll, “Schwarz–Christoffel mapping in the computer era”, Proceedings of the international congress of mathematicians, vol. III (Berlin, 1998), Doc. Math., 1998, Extra Vol. ICM III, 533–542 | MR | Zbl

[88] R. Schinzinger, P. A. A. Laura, Conformal mapping. Methods and applications, Rev. ed., Dover Publications, Inc., Mineola, NY, 2003, xxiv+583 pp. | MR | Zbl

[89] E. Sharon, D. Mumford, “2D-shape analysis using conformal mapping”, Int. J. Comput. Vis., 70:1 (2006), 55–75 | DOI

[90] A. Tiwary, C. Hu, S. Ghosh, “Numerical conformal mapping method based on Voronoi cell finite element model for analyzing microstructures with irregular heterogeneities”, Finite Elem. Anal. Des., 43:6-7 (2007), 504–520 | DOI | MR

[91] V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Russian Math. Surveys, 72:3 (2017), 479–511 | DOI | DOI | MR | Zbl

[92] L. V. Kantorovich, V. I. Krylov, Approximate methods of higher analysis, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958, xv+681 pp. | MR | MR | Zbl | Zbl

[93] W. von Koppenfels, F. Stallmann, Praxis der konformen Abbildung, Grundlehren Math. Wiss., 100, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, xiii+375 pp. | MR | Zbl | Zbl

[94] D. Gaier, Konstructive Methoden der konformen Abbildung, Springer Tracts Nat. Philos., 3, Springer-Verlag, Berlin, 1964, xiii+294 pp. | MR | Zbl

[95] R. Menikoff, C. Zemach, “Methods for numerical conformal mapping”, J. Comput. Phys., 36:3 (1980), 366–410 | DOI | MR | Zbl

[96] L. N. Trefethen (ed.), Numerical conformal mapping, North-Holland Publishing Co., Amsterdam, 1986, iv+269 pp. | MR | Zbl

[97] P. Henrici, Applied and computational complex analysis, v. 1, Reprint of 1974 original, Wiley-Interscience [John Wiley Sons, Inc.], New York, 1988, xviii+682 pp. ; v. 2, Reprint of 1977 original, 1991, x+662 pp. ; v. 3, Reprint of 1986 original, 1993, xvi+637 pp. | MR | Zbl | MR | Zbl | MR | Zbl

[98] P. K. Kythe, Computational conformal mapping, Birkhäuser Boston, Inc., Boston, MA, 1998, xvi+462 pp. | DOI | MR | Zbl

[99] T. A. Driscoll, L. N. Trefethen, Schwarz–Christoffel mapping, Cambridge Monogr. Appl. Comput. Math., 8, Cambridge Univ. Press, Campridge, 2002, xvi+132 pp. | DOI | MR | Zbl

[100] N. Papamichael, N. Stylianopoulos, Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, xii+229 pp. | DOI | MR | Zbl

[101] V. I. Smirnov, Kurs vysshei matematiki, v. 3, chast 2, 8-e izd., ispr. i dop., Nauka, M., 1969, 672 pp.; С‚. 4, 5-Рμ РёР·Рґ., ГостРμС...издат, Рњ., 1958, 804 СЃ.; V. I. Smirnov, A course of higher mathematics, С‚. III, Part 2, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, x+700 СЃ. ; v. IV, Pergamon Press, Oxford–New York; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, xiii+811 pp. | MR | Zbl | MR

[102] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Math., 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, xii+438 pp. | MR | MR | Zbl | Zbl

[103] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant, Grundlehren Math. Wiss., 3, 4. Aufl., Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl

[104] A. I. Markushevich, Theory of functions of a complex variable, v. II, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xii+333 pp. | MR | MR | Zbl | Zbl

[105] L. N. Trefethen, “Numerical computation of the Schwarz–Christoffel transformation”, SIAM J. Sci. Statist. Comput., 1:1 (1980), 82–102 | DOI | MR | Zbl

[106] C. Zemach, “A conformal map formula for difficult cases”, J. Comput. Appl. Math., 14:1-2 (1986), 207–215 | DOI | MR | Zbl

[107] B. C. Krikeles, R. L. Rubin, “On the crowding of parameters associated with Schwarz–Christoffel transformations”, Appl. Math. Comput., 28:4 (1988), 297–308 | DOI | MR | Zbl

[108] T. A. Driscoll, “Algorithm 756: a MATLAB toolbox for Schwarz–Christoffel mapping”, ACM Trans. Math. Software, 22:2 (1996), 168–186 | DOI | Zbl

[109] N. N. Nakipov, S. R. Nasyrov, “Parametricheskii metod nakhozhdeniya aktsessornykh parametrov v obobschennykh integralakh Kristoffelya–Shvartsa”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2016, 202–220 | MR

[110] V. I. Vlasov, S. L. Skorokhodov, “Multipole method for the Dirichlet problem on doubly connected domains of complex geometry: A general description of the method”, Comput. Math. Math. Phys., 40:11 (2000), 1567–1581 | MR | Zbl

[111] S. I. Bezrodnykh, V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma”, Comput. Math. Math. Phys., 42:3 (2002), 263–298 | MR | Zbl

[112] L. N. Trefethen, “Numerical construction of comformal maps”, Appendix to: E. B. Saff, A. D. Snider, Fundamentals of complex analysis for mathematics, science, and engineering, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993, A1–A18 | Zbl

[113] A. B. Bogatyrev, “Conformal mapping of rectangular heptagons”, Sb. Math., 203:12 (2012), 1715–1735 | DOI | DOI | MR | Zbl

[114] V. I. Vlasov, “On the variation of the mapping function under deformation of a domain”, Soviet Math. Dokl., 29:2 (1984), 377–379 | MR | Zbl

[115] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Izd-vo VTs AN SSSR, M., 1987, 272 pp. | MR | Zbl

[116] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp. | MR | MR | Zbl | Zbl

[117] C. G. J. Jacobi, “Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe”, J. Reine Angew. Math., 1859:56 (1859), 149–165 | DOI | MR | Zbl

[118] D. Hilbert, “Über eine Anwendung der Integralgleichungen auf ein Problem der Functionentheorie”, Verhandlungen des 3. Internationalen Mathematiker-Kongresses (Heidelberg, 1904), Teubner, Leipzig, 1905, 233–240 | DOI | Zbl

[119] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig–Berlin, 1912, xxiv+282 pp. | MR | Zbl

[120] F. Noether, “Über eine Klasse singulärer Integralgleichungen”, Math. Ann., 82:1-2 (1920), 42–63 | DOI | MR | Zbl

[121] T. Carleman, “Sur la résolution de cértaines équations intégrales”, Ark. Mat., Astr. Fys., 16 (1922), 26, 19 pp. | Zbl

[122] N. Muskhelishvili, Applications des intégrales analogues à celles de Cauchy à quelques problèmes de la physique mathématique, Édition de l'Université de Tiflis, Tiflis, 1922, viii+157 pp. | Zbl

[123] É. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles avec des applications à la physique mathématique, Gauthier-Villars, Paris, 1927, 214 pp. | MR | Zbl

[124] F. D. Gakhov, “O kraevoi zadache Rimana”, Matem. sb., 2(44):4 (1937), 673–683 | Zbl

[125] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V., Groningen, 1953, vi+447 pp. | MR | MR | Zbl | Zbl

[126] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1966, xix+561 pp. | MR | MR | Zbl | Zbl

[127] W. L. Wendland, Elliptic systems in the plane, Monogr. Stud. Math., 3, Pitman, Boston, MA–London, 1979, xi+404 pp. | MR | Zbl

[128] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Science Publishers, New York, 1988, xiv+504 pp. | MR | MR | Zbl | Zbl

[129] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovshchik, V. Ya. Stet'senko, Integral equations, Noordhoff International Publishing, Leyden, 1975, xix+443 pp. | Zbl | Zbl

[130] S. Prössdorf, Einige Klassen singulärer Gleichungen, Lehrbucher Monogr. Geb. Exakten Wissensch., Math. Reihe, 46, Birkhäuser Verlag, Basel–Stuttgart, 1974, xii+353 pp. | DOI | MR | MR | Zbl | Zbl

[131] E. Trefftz, “Über die Wirkung einer Abrundung auf die Torsionsspannungen in der inneren Ecke eines Winkeleisens”, Z. Angew. Math. Mech., 2:4 (1922), 263–267 | DOI | Zbl

[132] Ph. Frank, R. von Mises, Die Differential- und Integralgleichungen der Mechanik und Physik, 8. Aufl. von Riemann–Webers Partiellen Differentialgleichungen der Mathematischen Physik. Zweiter (physikalischer) Teil, 2. verm. Aufl., Friedr. Vieweg Sohn, Braunschweig, 1935, 1106 pp. | Zbl

[133] L. N. Trefethen, R. J. Williams, “Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary conditions”, J. Comput. Appl. Math., 14:1-2 (1986), 227–249 | DOI | MR | Zbl

[134] S. A. Markovskii, B. V. Somov, “Model magnitnogo peresoedineniya v tokovom sloe s udarnymi volnami”, Trudy 6-go ezhegodnogo seminara “Problemy fiziki solnechnykh vspyshek”, Nauka, M., 1989, 456–472

[135] P. A. Krutitskii, “The flow of electric current from rectilinear electrodes in a magnetized semiconductor film”, U.S.S.R. Comput. Math. Math. Phys., 30:6 (1990), 64–73 | DOI | MR

[136] A. I. Aptekarev, V. Van Assshe, S. P. Suetin, “Skalyarnaya zadacha Rimana i silnaya asimptotika approksimatsii Pade i ortogonalnykh mnogochlenov”, Preprinty IPM im. M. V. Keldysha, 2001, 026

[137] A. Aptekarev, A. Cachafeiro, F. Marcellán, “A scalar Riemann boundary value problem approach to orthogonal polynomials on the circle”, J. Approx. Theory, 141:2 (2006), 174–181 | DOI | MR | Zbl

[138] A. M. Maltseva, Yu. V. Obnosov, S. V. Rogozin, “Obobschenie teoremy Miln-Tomsona na sluchai kontsentricheskogo koltsa”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2006, 35–50 | Zbl

[139] A. S. Demidov, “Functional geometric method for solving free boundary problems for harmonic functions”, Russian Math. Surveys, 65:1 (2010), 1–94 | DOI | DOI | MR | Zbl

[140] S. I. Bezrodnykh, V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (2014), 1826–1875 | DOI | DOI | MR | Zbl

[141] A. P. Soldatov, “Weighted Hardy classes of analytic functions”, Differ. Equ., 38:6 (2002), 855–864 | DOI | MR | Zbl

[142] A. P. Soldatov, “K teorii anizotropnoi ploskoi uprugosti”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Chast 3 (Moskva, 22–29 avgusta, 2014), SMFN, 60, RUDN, M., 2016, 114–163 | MR

[143] R. B. Salimov, P. L. Shabalin, Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazanskogo matem. o-va, Kazan, 2005, 298 pp.

[144] S. B. Klimentov, Granichnye svoistva obobschennykh analiticheskikh funktsii, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 200 pp. | MR | Zbl

[145] B. A. Kats, “Riemann boundary-value problem for holomorphic matrices on non-rectifiable curve”, Russian Math. (Iz. VUZ), 61:2 (2017), 17–27 | DOI | MR | Zbl

[146] B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “Jump boundary-value problem on a contour with elongate singularities”, Russian Math. (Iz. VUZ), 61:1 (2017), 10–13 | DOI | MR | Zbl

[147] M. A. Efendiev, W. L. Wendland, “Nonlinear Riemann–Hilbert problems for muliply connected domains”, Nonlinear Anal., 27:1 (1996), 37–58 | DOI | MR | Zbl

[148] P. P. Kufarev, “K voprosu o kruchenii i izgibe sterzhnei poligonalnogo secheniya”, PMM, 1:1 (1937), 43–76 | Zbl

[149] V. I. Vlasov, S. L. Skorokhodov, “On an improvement of Trefftz' method”, Russian Acad. Sci. Dokl. Math., 50:1 (1995), 157–163 | MR | Zbl

[150] W. C. Hassenpflug, “Torsion of uniform bars with polygon cross-section”, Comput. Math. Appl., 46:2-3 (2003), 313–392 | DOI | MR | Zbl

[151] V. I. Vlasov, S. A. Markovskii, B. V. Somov, Ob analiticheskoi modeli magnitnogo peresoedineniya v plazme, Rukopis dep. v VINITI 6.01.1989 No 769-V89, M., 1989, 19 pp.

[152] L. A. Aksent'ev, I. A. Zorin, “On classes of multivalent analytic functions, which solve Hilbert problem”, Soviet Math. (Iz. VUZ), 35:12 (1991), 75–78 | MR | Zbl

[153] P. L. Shabalin, E. N. Karabasheva, “Ob odnolistnosti otobrazhenii obobschennoi formuloi Kristoffelya–Shvartsa”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 81–86

[154] O. I. Marichev, Handbook of integral transforms of higher transcendental functions. Theory and algorithmic tables, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; John Wiley Sons, Inc., New York, 1983, 336 pp. | MR | MR | Zbl | Zbl

[155] V. S. Vladimirov, Methods of the theory of functions of many complex variables, The M.I.T. Press, Cambridge, MA–London, 1966, xii+353 pp. | MR | MR | Zbl

[156] B. V. Shabat, Introduction to complex analysis, v. II, Transl. Math. Monogr., 110, Functions of several variables, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | MR | Zbl

[157] Yu. A. Brychkov, N. Saad, “Some formulas for the Appell function $F_1(a,b,b';\break c;w,z)$”, Integral Transforms Spec. Funct., 23:11 (2012), 793–802 | DOI | MR | Zbl

[158] B. V. Somov, S. I. Syrovatskii, Neitralnye tokovye sloi v plazme, Tr. FIAN, 74, Nauka, M., 1974, 167 pp.

[159] L. M. 3elënyi, Dinamika plazmy i magnitnykh polei v khvoste magnitosfery Zemli, Itogi nauki i tekhniki. Ser. Issledovaniya kosmicheskogo prostranstva, 24, VINITI, M., 1986

[160] B. V. Somov, Plasma astrophysics, v. I, Astrophys. Space Sci. Libr., 391, Fundamentals and practice, 2nd ed., Springer, New York, NY, 2012, xxvi+498 pp. ; v. II, Astrophys. Space Sci. Libr., 392, Reconnection and flares, 2013, xxii+506 pp. | DOI | Zbl | DOI | Zbl

[161] B. V. Somov, S. I. Syrovatskii, “Electric and magnetic fields arising from the rupture of a neutral current sheet”, Bull. Acad. Sci. USSR Phys. Ser., 39:2 (1975), 109–111

[162] O. A. Grigorev, Konformnye otobrazheniya pryamougolnykh mnogougolnikov: chislenno-analiticheskii metod, Diss. ... kand. fiz.-matem. nauk, In-t vychisl. matem. RAN, M., 2015, 86 pp.

[163] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 3, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955, xvii+292 pp. | MR | MR | Zbl | Zbl