@article{RM_2018_73_6_a0,
author = {S. I. Bezrodnykh},
title = {The {Lauricella} hypergeometric function $F_D^{(N)}$, the {Riemann{\textendash}Hilbert} problem, and some applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {941--1031},
year = {2018},
volume = {73},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/}
}
TY - JOUR
AU - S. I. Bezrodnykh
TI - The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2018
SP - 941
EP - 1031
VL - 73
IS - 6
UR - http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/
LA - en
ID - RM_2018_73_6_a0
ER -
%0 Journal Article
%A S. I. Bezrodnykh
%T The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 941-1031
%V 73
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/
%G en
%F RM_2018_73_6_a0
S. I. Bezrodnykh. The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 6, pp. 941-1031. http://geodesic.mathdoc.fr/item/RM_2018_73_6_a0/
[1] L. Pochhammer, “Über hypergeometrische Funktionen $n^{\mathrm{ter}}$ Ordnungen”, J. Reine Angew. Math., 1870:71 (1870), 316–352 | DOI | MR | Zbl
[2] P. Appel, “Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles”, C. R. Acad. Sci. Paris, 90 (1880), 296–298 | Zbl
[3] P. Appel, “Sur les fonctions hypergéométriques de deux variables”, J. Math. Pures Appl. (3), 8 (1882), 173–216 | Zbl
[4] E. Picard, “Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques”, Ann. Sci. École Norm. Sup. (2), 10:2 (1881), 305–322 | DOI | MR | Zbl
[5] J. Horn, “Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34:4 (1889), 544–600 | DOI | MR | Zbl
[6] G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Mat. Palermo, 7 (1893), 111–158 | DOI | Zbl
[7] P. Appel, J. Kampé de Feriet, Fonctions hypergéométriques et hypersphériques, Gauthier-Villars, Paris, 1926, vii+434 pp. | Zbl
[8] O. Ore, “Sur la forme de fonctions hypergéométriques de plusieurs variables”, J. Math. Pures Appl. (9), 9:4 (1930), 311–326 | Zbl
[9] J. Horn, “Hypergeometrische Funktionen zweier Veränderlichen”, Math. Ann., 105:1 (1931), 381–407 | DOI | MR | Zbl
[10] A. Erdélyi, “Hypergeometric functions of two variables”, Acta Math., 83 (1950), 131–164 | DOI | MR | Zbl
[11] P. O. M. Olsson, “Integration of the partial differential equations for the hypergeometric functions $F_1$ and $F_D$ of two and more variables”, J. Math. Phys., 5:3 (1964), 420–430 | DOI | MR | Zbl
[12] S. G. Gindikin, “Analysis in homogeneous domains”, Russian Math. Surveys, 19:4 (1964), 1–89 | DOI | MR | Zbl
[13] H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1976, 312 pp. | MR | Zbl
[14] K. Aomoto, “On the structure of integrals of power products of linear functions”, Sci. Papers College Gen. Ed. Univ. Tokyo, 27:2 (1977), 49–61 | MR | Zbl
[15] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York, 1985, 425 pp. | MR | Zbl
[16] I. M. Gel'fand, “General theory of hypergeometric functions”, Soviet Math. Dokl., 33:3 (1986), 573–577 | MR | Zbl
[17] P. Deligne, G. D. Mostow, “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5–89 | DOI | MR | Zbl
[18] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI | MR | Zbl
[19] M. Yoshida, Fuchsian differential equations. With special emphasis on the Gauss–Schwarz theory, Aspects Math., E11, Friedr. Vieweg Sohn, Braunschweig, 1987, xiv+215 pp. | DOI | MR | Zbl
[20] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl
[21] B. Dwork, Generalized hypergeometric functions, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1990, vi+188 pp. | MR | Zbl
[22] M. Sato, “Theory of prehomogeneous vector spaces (algebraic part) – the English translation of Sato's lecture from Shintani's note”, Notes by T. Shintani. Transl. from the Japan. by M. Muro, Nagoya Math. J., 120 (1990), 1–34 | DOI | MR | Zbl
[23] K. Iwasaki, H. Kimura, Sh. Shimomura, M. Yoshida, From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991, xii+347 pp. | DOI | MR | Zbl
[24] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl
[25] V. A. Vassiliev, Applied Picard–Lefschetz theory, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2002, xii+324 pp. | DOI | MR | Zbl
[26] R.-P. Holzapfel, A. M. Uludağ, M. Yoshida (eds.), Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Birkhäuser Verlag, Basel, 2007, viii+437 pp. | DOI | MR | Zbl
[27] K. Aomoto, M. Kita, Theory of hypergeometric functions, Springer Monogr. Math., Springer-Verlag, Tokyo, 2011, xvi+317 pp. | DOI | MR | Zbl
[28] T. M. Sadykov, A. K. Tsikh, Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014, 408 pp.
[29] T. M. Sadykov, S. Tanabé, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262 | DOI | DOI | MR | Zbl
[30] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl
[31] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl
[32] W. Miller, Jr., “Lie theory and the Lauricella functions $F_D$”, J. Math. Phys., 13 (1972), 1393–1399 | DOI | MR | Zbl
[33] H. J. Haubold, A. M. Mathai, “On the nuclear energy generation rate in a simple analytic stellar model”, Ann. Physik (7), 496:6 (1984), 372–379 | DOI
[34] I. G. Kaplan, G. L. Yudin, “Nonrelativistic Compton effect on a bound electron”, Soviet Physics JETP, 42:1 (1975), 4–10
[35] P. Martínez-González, A. Zarzo, “Higher order hypergeometric Lauricella function and zero asymptotics of orthogonal polynomials”, J. Comput. Appl. Math., 233:6 (2010), 1577–1583 | DOI | MR | Zbl
[36] N. Borghini, C. Gombeaud, “Anisotropic flow far from equilibrium”, Eur. Phys. J. C, 71 (2011), 1612, 13 pp. | DOI
[37] G. V. Kraniotis, “Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes”, Classical Quantum Gravity, 24:7 (2007), 1775–1808 | DOI | MR | Zbl
[38] G. V. Kraniotis, General relativity, Lauricella's hypergeometric function $F_D$ and the theory of braids, 2007, 16 pp., arXiv: 0709.3391
[39] K. Peppas, “Performance analysis of maximal ratio diversity receivers over generalized fading channels”, Advanced trends in wireless communications, InTech, Rijeka, 2011, 47–64 | DOI
[40] A. Lijoi, E. Regazzini, “Means of a Dirichlet process and multiple hypergeometric functions”, Ann. Probab., 32:2 (2004), 1469–1495 | DOI | MR | Zbl
[41] S. V. Kerov, N. V. Tsilevich, “The Markov–Krein correspondence in several dimensions”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. VI, Zap. nauch. sem. POMI, 283, POMI, SPb., 2001, 98–122 ; J. Math. Sci. (N. Y.), 121:3 (2004), 2345–2359 | MR | Zbl | DOI
[42] J.-F. Chamayou, J. Wesołowski, “Lauricella and Humbert functions through probabilistic tools”, Integral Transforms Spec. Funct., 20:7 (2009), 529–538 | DOI | MR | Zbl
[43] M. E. H. Ismail, J. Pitman, “Algebraic evaluations of some Euler integrals, duplication formulae for Appell's hypergeometric function $F_1$, and Brownian variations”, Canad. J. Math., 52:5 (2000), 961–981 | DOI | MR | Zbl
[44] A. W. Owen, Interactions in D-brane configurations, PhD thesis, Durham Univ., 2004, x+133 pp. http://etheses.dur.ac.uk/3097/
[45] M. A. I. Flohr, “Logarithmic conformal field theory and Seiberg–Witten models”, Phys. Lett. B, 444:1-2 (1998), 179–189 | DOI | MR
[46] M. Flohr, “Logarithmic conformal field theory or how to compute a torus amplitude on the sphere”, From fields to strings: circumnavigating theoretical physics, v. 2, World Sci. Publ., Singapore, 2005, 1201–1256 | MR | Zbl
[47] N. Akerblom, M. Flohr, “Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas point”, J. High Energy Phys., 2005:2 (2005), 057, 24 pp. | DOI | MR
[48] A. I. Davydychev, “General results for massive $N$-point Feynman diagrams with different masses”, J. Math. Phys., 33:1 (1992), 358–369 | DOI | MR
[49] J. Fleischer, F. Jegerlehner, O. V. Tarasov, “A new hypergeometric representation of one-loop scalar integrals in $d$ dimensions”, Nuclear Phys. B, 672:1-2 (2003), 303–328 | DOI | MR | Zbl
[50] T. Kaneko, Numerical calculation of one-loop integration with hypergeometric functions, talk given at 3rd Computational Particle Physics Workshop – CPP2010 (September 23–25, 2010, KEK, Japan), 2011, 8 pp., arXiv: 1105.2080
[51] V. V. Bytev, M. Yu. Kalmykov, S.-O. Moch, “Hypergeometric functions differential reduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: $F_D$ and $F_S$ Horn-type hypergeometric functions of three variables”, Comput. Phys. Commun., 185:11 (2014), 3041–3058 | DOI | Zbl
[52] E. I. Shifrin, Prostranstvennye zadachi lineinoi mekhaniki razrusheniya, Fizmatlit, M., 2002, 368 pp.
[53] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988, 448 pp.; D. Mumford, Tata lectures on theta, С‚. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 СЃ. ; v. II, Progr. Math., 43, 1984, xiv+272 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[54] Ch. F. Dunkl, D. E. Ramirez, “Algorithm 736: hyperelliptic integrals and the surface measure of ellipsoids”, ACM Trans. Math. Software, 20:4 (1994), 427–435 | DOI | MR
[55] G. M. Scarpello, D. Ritelli, “The hyperelliptic integrals and $\pi$”, J. Number Theory, 129:12 (2009), 3094–3108 | DOI | MR | Zbl
[56] G. M. Scarpello, D. Ritelli, “On computing some special values of multivariate hypergeometric functions”, J. Math. Anal. Appl., 420:2 (2014), 1693–1718 | DOI | MR | Zbl
[57] S. I. Bezrodnykh, “Analytic continuation formulas and Jacobi-type relations for Lauricella function”, Dokl. Math., 93:2 (2016), 129–134 | DOI | DOI | MR | Zbl
[58] S. I. Bezrodnykh, “On the analytic continuation of the Lauricella function $F_D^{(N)}$”, Math. Notes, 100:2 (2016), 318–324 | DOI | DOI | MR | Zbl
[59] S. I. Bezrodnykh, Singulyarnaya zadacha Rimana–Gilberta, gipergeometricheskaya funktsiya Laurichelly i prilozheniya k astrofizike, Diss. ... dokt. fiz.-matem. nauk, FITs IU RAN, M., 2017, 300 pp.
[60] S. I. Bezrodnykh, “Analytic continuation of the Lauricella function $F_D^{(N)}$ with arbitrary number of variables”, Integral Transforms Spec. Funct., 29:1 (2018), 21–42 | DOI | MR | Zbl
[61] S. I. Bezrodnykh, “Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case”, Comput. Math. Math. Phys., 57:4 (2017), 559–589 | DOI | DOI | MR | Zbl
[62] S. I. Bezrodnykh, V. I. Vlasov, “Zadacha Rimana–Gilberta v oblastyakh slozhnoi formy i ee prilozhenie”, Spectral and Evolution Problems, 16 (2006), 51–61
[63] S. I. Bezrodnykh, V. I. Vlasov, “On a new representation for the solution of the Riemann–Hilbert problem”, Math. Notes, 99:6 (2016), 932–937 | DOI | MR | Zbl
[64] S. I. Bezrodnykh, “Finding the coefficients in the new representation of the solution of the Riemann–Hilbert problem using the Lauricella function”, Math. Notes, 101:5 (2017), 759–777 | DOI | DOI | MR | Zbl
[65] S. I. Bezrodnykh, “Sootnoshenie tipa Yakobi dlya obobschennoi gipergeometricheskoi funktsii”, Matematicheskie idei P. L. Chebysheva i ikh prilozhenie k sovremennym problemam estestvoznaniya, Tezisy dokladov (Obninsk, 2006), Obninskii gos. tekh. un-t atomnoi energetiki, Obninsk, 2006, 18–19
[66] S. I. Bezrodnykh, “Jacobi-type differential relations for the Lauricella function $F_D^{(N)}$”, Math. Notes, 99:6 (2016), 821–833 | DOI | DOI | MR | Zbl
[67] S. I. Bezrodnykh, B. V. Somov, V. I. Vlasov, “Generalized analytical models of Syrovatskii's current sheet”, Astron. Lett., 37:2 (2011), 113–130 | DOI
[68] Hj. Mellin, “Über den Zusammenhang zwischen den linearen Differential- und Differenzengleichungen”, Acta Math., 25:1 (1902), 139–164 | DOI | MR | Zbl
[69] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000, viii+254 pp. | DOI | MR | Zbl
[70] J. Stienstra, “GKZ hypergeometric structures”, Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Basel, Birkhäuser, 2007, 313–371 | DOI | MR | Zbl
[71] F. Beukers, “Monodromy of $A$-hypergeometric functions”, J. Reine Angew. Math., 2016:718 (2016), 183–206 ; (2013 (v1 – 2011)), 29 pp., arXiv: 1101.0493v2 | DOI | MR | Zbl
[72] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Generalized Euler integrals and $A$-hypergeometric functions”, Adv. Math., 84:2 (1990), 255–271 | DOI | MR | Zbl
[73] E. E. Kummer, “Über die hypergeometrische Reihe $1+\frac{\alpha\cdot\beta}{1\cdot \gamma} x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot\gamma(\gamma+1)}x^2+ \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\gamma(\gamma+1)(\gamma+2)}x^3\cdots\vphantom{\Bigl\}}$”, J. Reine Angew. Math., 1836:15 (1836), 39–83 ; Fortsetzung, 127–172 | DOI | MR | Zbl | DOI | MR | Zbl
[74] B. Riman, “Osnovy obschei teorii funktsii odnoi kompleksnoi peremennoi”, Sochineniya, Gostekhizdat, M., 1948, 49–87; B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen, 1851, 43 pp.; in: Gesammelte mathematische Werke und wissenschaftlicher Nachlass, Teubner, Leipzig, 1876, 3–43 | Zbl
[75] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, 2-e izd., Gostekhizdat, M.–L., 1950, 436 pp. | MR | Zbl
[76] K. Mimachi, T. Sasaki, “Monodromy representations associated with Appel's hypergeometric function $F_1$ using integrals of a multivalued function”, Kyushu J. Math., 66:1 (2012), 89–114 | DOI | MR
[77] K. Matsumoto, “Monodromy and Pfaffian of Lauricella's $F_D$ in terms of the intersection forms of twisted (co)homology groups”, Kyushu J. Math., 67:2 (2013), 367–387 | DOI | MR | Zbl
[78] E. Looijenga, “Uniformization by Lauricella functions – an overview of the theory of Deligne–Mostow”, Arithmetic and geometry around hypergeometric functions, Progr. Math., 260, Birkhäuser, Basel, 2007, 207–244 | DOI | MR | Zbl
[79] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl
[80] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377 | DOI | DOI | MR | Zbl
[81] S. P. Suetin, Hermite–Padé polynomials and analytic continuation: new approach and some results, 2018, 63 pp., arXiv: 1806.08735
[82] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Diss. ... dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1990, 402 pp.
[83] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, xiii+330 pp. | DOI | MR | Zbl
[84] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl
[85] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967, x+846 pp. | MR | MR | Zbl | Zbl
[86] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, 2-e izd., Nauka, M., 1977, 407 pp. | MR
[87] L. N. Trefethen, T. A. Driscoll, “Schwarz–Christoffel mapping in the computer era”, Proceedings of the international congress of mathematicians, vol. III (Berlin, 1998), Doc. Math., 1998, Extra Vol. ICM III, 533–542 | MR | Zbl
[88] R. Schinzinger, P. A. A. Laura, Conformal mapping. Methods and applications, Rev. ed., Dover Publications, Inc., Mineola, NY, 2003, xxiv+583 pp. | MR | Zbl
[89] E. Sharon, D. Mumford, “2D-shape analysis using conformal mapping”, Int. J. Comput. Vis., 70:1 (2006), 55–75 | DOI
[90] A. Tiwary, C. Hu, S. Ghosh, “Numerical conformal mapping method based on Voronoi cell finite element model for analyzing microstructures with irregular heterogeneities”, Finite Elem. Anal. Des., 43:6-7 (2007), 504–520 | DOI | MR
[91] V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Russian Math. Surveys, 72:3 (2017), 479–511 | DOI | DOI | MR | Zbl
[92] L. V. Kantorovich, V. I. Krylov, Approximate methods of higher analysis, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958, xv+681 pp. | MR | MR | Zbl | Zbl
[93] W. von Koppenfels, F. Stallmann, Praxis der konformen Abbildung, Grundlehren Math. Wiss., 100, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, xiii+375 pp. | MR | Zbl | Zbl
[94] D. Gaier, Konstructive Methoden der konformen Abbildung, Springer Tracts Nat. Philos., 3, Springer-Verlag, Berlin, 1964, xiii+294 pp. | MR | Zbl
[95] R. Menikoff, C. Zemach, “Methods for numerical conformal mapping”, J. Comput. Phys., 36:3 (1980), 366–410 | DOI | MR | Zbl
[96] L. N. Trefethen (ed.), Numerical conformal mapping, North-Holland Publishing Co., Amsterdam, 1986, iv+269 pp. | MR | Zbl
[97] P. Henrici, Applied and computational complex analysis, v. 1, Reprint of 1974 original, Wiley-Interscience [John Wiley Sons, Inc.], New York, 1988, xviii+682 pp. ; v. 2, Reprint of 1977 original, 1991, x+662 pp. ; v. 3, Reprint of 1986 original, 1993, xvi+637 pp. | MR | Zbl | MR | Zbl | MR | Zbl
[98] P. K. Kythe, Computational conformal mapping, Birkhäuser Boston, Inc., Boston, MA, 1998, xvi+462 pp. | DOI | MR | Zbl
[99] T. A. Driscoll, L. N. Trefethen, Schwarz–Christoffel mapping, Cambridge Monogr. Appl. Comput. Math., 8, Cambridge Univ. Press, Campridge, 2002, xvi+132 pp. | DOI | MR | Zbl
[100] N. Papamichael, N. Stylianopoulos, Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, xii+229 pp. | DOI | MR | Zbl
[101] V. I. Smirnov, Kurs vysshei matematiki, v. 3, chast 2, 8-e izd., ispr. i dop., Nauka, M., 1969, 672 pp.; С‚. 4, 5-Рμ РёР·Рґ., ГостРμС...издат, Рњ., 1958, 804 СЃ.; V. I. Smirnov, A course of higher mathematics, С‚. III, Part 2, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, x+700 СЃ. ; v. IV, Pergamon Press, Oxford–New York; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, xiii+811 pp. | MR | Zbl | MR
[102] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Math., 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, xii+438 pp. | MR | MR | Zbl | Zbl
[103] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant, Grundlehren Math. Wiss., 3, 4. Aufl., Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl
[104] A. I. Markushevich, Theory of functions of a complex variable, v. II, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xii+333 pp. | MR | MR | Zbl | Zbl
[105] L. N. Trefethen, “Numerical computation of the Schwarz–Christoffel transformation”, SIAM J. Sci. Statist. Comput., 1:1 (1980), 82–102 | DOI | MR | Zbl
[106] C. Zemach, “A conformal map formula for difficult cases”, J. Comput. Appl. Math., 14:1-2 (1986), 207–215 | DOI | MR | Zbl
[107] B. C. Krikeles, R. L. Rubin, “On the crowding of parameters associated with Schwarz–Christoffel transformations”, Appl. Math. Comput., 28:4 (1988), 297–308 | DOI | MR | Zbl
[108] T. A. Driscoll, “Algorithm 756: a MATLAB toolbox for Schwarz–Christoffel mapping”, ACM Trans. Math. Software, 22:2 (1996), 168–186 | DOI | Zbl
[109] N. N. Nakipov, S. R. Nasyrov, “Parametricheskii metod nakhozhdeniya aktsessornykh parametrov v obobschennykh integralakh Kristoffelya–Shvartsa”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2016, 202–220 | MR
[110] V. I. Vlasov, S. L. Skorokhodov, “Multipole method for the Dirichlet problem on doubly connected domains of complex geometry: A general description of the method”, Comput. Math. Math. Phys., 40:11 (2000), 1567–1581 | MR | Zbl
[111] S. I. Bezrodnykh, V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma”, Comput. Math. Math. Phys., 42:3 (2002), 263–298 | MR | Zbl
[112] L. N. Trefethen, “Numerical construction of comformal maps”, Appendix to: E. B. Saff, A. D. Snider, Fundamentals of complex analysis for mathematics, science, and engineering, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993, A1–A18 | Zbl
[113] A. B. Bogatyrev, “Conformal mapping of rectangular heptagons”, Sb. Math., 203:12 (2012), 1715–1735 | DOI | DOI | MR | Zbl
[114] V. I. Vlasov, “On the variation of the mapping function under deformation of a domain”, Soviet Math. Dokl., 29:2 (1984), 377–379 | MR | Zbl
[115] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Izd-vo VTs AN SSSR, M., 1987, 272 pp. | MR | Zbl
[116] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp. | MR | MR | Zbl | Zbl
[117] C. G. J. Jacobi, “Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe”, J. Reine Angew. Math., 1859:56 (1859), 149–165 | DOI | MR | Zbl
[118] D. Hilbert, “Über eine Anwendung der Integralgleichungen auf ein Problem der Functionentheorie”, Verhandlungen des 3. Internationalen Mathematiker-Kongresses (Heidelberg, 1904), Teubner, Leipzig, 1905, 233–240 | DOI | Zbl
[119] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig–Berlin, 1912, xxiv+282 pp. | MR | Zbl
[120] F. Noether, “Über eine Klasse singulärer Integralgleichungen”, Math. Ann., 82:1-2 (1920), 42–63 | DOI | MR | Zbl
[121] T. Carleman, “Sur la résolution de cértaines équations intégrales”, Ark. Mat., Astr. Fys., 16 (1922), 26, 19 pp. | Zbl
[122] N. Muskhelishvili, Applications des intégrales analogues à celles de Cauchy à quelques problèmes de la physique mathématique, Édition de l'Université de Tiflis, Tiflis, 1922, viii+157 pp. | Zbl
[123] É. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles avec des applications à la physique mathématique, Gauthier-Villars, Paris, 1927, 214 pp. | MR | Zbl
[124] F. D. Gakhov, “O kraevoi zadache Rimana”, Matem. sb., 2(44):4 (1937), 673–683 | Zbl
[125] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V., Groningen, 1953, vi+447 pp. | MR | MR | Zbl | Zbl
[126] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1966, xix+561 pp. | MR | MR | Zbl | Zbl
[127] W. L. Wendland, Elliptic systems in the plane, Monogr. Stud. Math., 3, Pitman, Boston, MA–London, 1979, xi+404 pp. | MR | Zbl
[128] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Science Publishers, New York, 1988, xiv+504 pp. | MR | MR | Zbl | Zbl
[129] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovshchik, V. Ya. Stet'senko, Integral equations, Noordhoff International Publishing, Leyden, 1975, xix+443 pp. | Zbl | Zbl
[130] S. Prössdorf, Einige Klassen singulärer Gleichungen, Lehrbucher Monogr. Geb. Exakten Wissensch., Math. Reihe, 46, Birkhäuser Verlag, Basel–Stuttgart, 1974, xii+353 pp. | DOI | MR | MR | Zbl | Zbl
[131] E. Trefftz, “Über die Wirkung einer Abrundung auf die Torsionsspannungen in der inneren Ecke eines Winkeleisens”, Z. Angew. Math. Mech., 2:4 (1922), 263–267 | DOI | Zbl
[132] Ph. Frank, R. von Mises, Die Differential- und Integralgleichungen der Mechanik und Physik, 8. Aufl. von Riemann–Webers Partiellen Differentialgleichungen der Mathematischen Physik. Zweiter (physikalischer) Teil, 2. verm. Aufl., Friedr. Vieweg Sohn, Braunschweig, 1935, 1106 pp. | Zbl
[133] L. N. Trefethen, R. J. Williams, “Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary conditions”, J. Comput. Appl. Math., 14:1-2 (1986), 227–249 | DOI | MR | Zbl
[134] S. A. Markovskii, B. V. Somov, “Model magnitnogo peresoedineniya v tokovom sloe s udarnymi volnami”, Trudy 6-go ezhegodnogo seminara “Problemy fiziki solnechnykh vspyshek”, Nauka, M., 1989, 456–472
[135] P. A. Krutitskii, “The flow of electric current from rectilinear electrodes in a magnetized semiconductor film”, U.S.S.R. Comput. Math. Math. Phys., 30:6 (1990), 64–73 | DOI | MR
[136] A. I. Aptekarev, V. Van Assshe, S. P. Suetin, “Skalyarnaya zadacha Rimana i silnaya asimptotika approksimatsii Pade i ortogonalnykh mnogochlenov”, Preprinty IPM im. M. V. Keldysha, 2001, 026
[137] A. Aptekarev, A. Cachafeiro, F. Marcellán, “A scalar Riemann boundary value problem approach to orthogonal polynomials on the circle”, J. Approx. Theory, 141:2 (2006), 174–181 | DOI | MR | Zbl
[138] A. M. Maltseva, Yu. V. Obnosov, S. V. Rogozin, “Obobschenie teoremy Miln-Tomsona na sluchai kontsentricheskogo koltsa”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2006, 35–50 | Zbl
[139] A. S. Demidov, “Functional geometric method for solving free boundary problems for harmonic functions”, Russian Math. Surveys, 65:1 (2010), 1–94 | DOI | DOI | MR | Zbl
[140] S. I. Bezrodnykh, V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (2014), 1826–1875 | DOI | DOI | MR | Zbl
[141] A. P. Soldatov, “Weighted Hardy classes of analytic functions”, Differ. Equ., 38:6 (2002), 855–864 | DOI | MR | Zbl
[142] A. P. Soldatov, “K teorii anizotropnoi ploskoi uprugosti”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Chast 3 (Moskva, 22–29 avgusta, 2014), SMFN, 60, RUDN, M., 2016, 114–163 | MR
[143] R. B. Salimov, P. L. Shabalin, Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazanskogo matem. o-va, Kazan, 2005, 298 pp.
[144] S. B. Klimentov, Granichnye svoistva obobschennykh analiticheskikh funktsii, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 200 pp. | MR | Zbl
[145] B. A. Kats, “Riemann boundary-value problem for holomorphic matrices on non-rectifiable curve”, Russian Math. (Iz. VUZ), 61:2 (2017), 17–27 | DOI | MR | Zbl
[146] B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “Jump boundary-value problem on a contour with elongate singularities”, Russian Math. (Iz. VUZ), 61:1 (2017), 10–13 | DOI | MR | Zbl
[147] M. A. Efendiev, W. L. Wendland, “Nonlinear Riemann–Hilbert problems for muliply connected domains”, Nonlinear Anal., 27:1 (1996), 37–58 | DOI | MR | Zbl
[148] P. P. Kufarev, “K voprosu o kruchenii i izgibe sterzhnei poligonalnogo secheniya”, PMM, 1:1 (1937), 43–76 | Zbl
[149] V. I. Vlasov, S. L. Skorokhodov, “On an improvement of Trefftz' method”, Russian Acad. Sci. Dokl. Math., 50:1 (1995), 157–163 | MR | Zbl
[150] W. C. Hassenpflug, “Torsion of uniform bars with polygon cross-section”, Comput. Math. Appl., 46:2-3 (2003), 313–392 | DOI | MR | Zbl
[151] V. I. Vlasov, S. A. Markovskii, B. V. Somov, Ob analiticheskoi modeli magnitnogo peresoedineniya v plazme, Rukopis dep. v VINITI 6.01.1989 No 769-V89, M., 1989, 19 pp.
[152] L. A. Aksent'ev, I. A. Zorin, “On classes of multivalent analytic functions, which solve Hilbert problem”, Soviet Math. (Iz. VUZ), 35:12 (1991), 75–78 | MR | Zbl
[153] P. L. Shabalin, E. N. Karabasheva, “Ob odnolistnosti otobrazhenii obobschennoi formuloi Kristoffelya–Shvartsa”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 81–86
[154] O. I. Marichev, Handbook of integral transforms of higher transcendental functions. Theory and algorithmic tables, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; John Wiley Sons, Inc., New York, 1983, 336 pp. | MR | MR | Zbl | Zbl
[155] V. S. Vladimirov, Methods of the theory of functions of many complex variables, The M.I.T. Press, Cambridge, MA–London, 1966, xii+353 pp. | MR | MR | Zbl
[156] B. V. Shabat, Introduction to complex analysis, v. II, Transl. Math. Monogr., 110, Functions of several variables, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | MR | Zbl
[157] Yu. A. Brychkov, N. Saad, “Some formulas for the Appell function $F_1(a,b,b';\break c;w,z)$”, Integral Transforms Spec. Funct., 23:11 (2012), 793–802 | DOI | MR | Zbl
[158] B. V. Somov, S. I. Syrovatskii, Neitralnye tokovye sloi v plazme, Tr. FIAN, 74, Nauka, M., 1974, 167 pp.
[159] L. M. 3elënyi, Dinamika plazmy i magnitnykh polei v khvoste magnitosfery Zemli, Itogi nauki i tekhniki. Ser. Issledovaniya kosmicheskogo prostranstva, 24, VINITI, M., 1986
[160] B. V. Somov, Plasma astrophysics, v. I, Astrophys. Space Sci. Libr., 391, Fundamentals and practice, 2nd ed., Springer, New York, NY, 2012, xxvi+498 pp. ; v. II, Astrophys. Space Sci. Libr., 392, Reconnection and flares, 2013, xxii+506 pp. | DOI | Zbl | DOI | Zbl
[161] B. V. Somov, S. I. Syrovatskii, “Electric and magnetic fields arising from the rupture of a neutral current sheet”, Bull. Acad. Sci. USSR Phys. Ser., 39:2 (1975), 109–111
[162] O. A. Grigorev, Konformnye otobrazheniya pryamougolnykh mnogougolnikov: chislenno-analiticheskii metod, Diss. ... kand. fiz.-matem. nauk, In-t vychisl. matem. RAN, M., 2015, 86 pp.
[163] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 3, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955, xvii+292 pp. | MR | MR | Zbl | Zbl