On the growth rate of the number of fullerenes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 734-736 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2018_73_4_a6,
     author = {A. D. Rukhovich},
     title = {On the growth rate of the number of fullerenes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {734--736},
     year = {2018},
     volume = {73},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/}
}
TY  - JOUR
AU  - A. D. Rukhovich
TI  - On the growth rate of the number of fullerenes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 734
EP  - 736
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/
LA  - en
ID  - RM_2018_73_4_a6
ER  - 
%0 Journal Article
%A A. D. Rukhovich
%T On the growth rate of the number of fullerenes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 734-736
%V 73
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/
%G en
%F RM_2018_73_4_a6
A. D. Rukhovich. On the growth rate of the number of fullerenes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 734-736. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/

[1] V. M. Buchstaber, N. Yu. Erokhovets, Combinatorial and toric homotopy. Introductory lectures, Lecture Notes Ser., Inst. Math. Sci., Natl. Univ. Singapore, 35, World Scientific, Hackensack, NJ, 2018, 67–178 | DOI

[2] W. P. Thurston, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 511–549 | DOI | MR | Zbl

[3] C.-H. Sah, Fullerene Science and Technology, 2:4 (1994), 445–458 | DOI

[4] P. Engel, P. Smillie, 2018 (v1 – 2017), 23 pp., arXiv: 1702.02614

[5] G. Brinkmann, A. W. M. Dress, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR

[6] J. Cioslowski, J. Math. Chem., 52:1 (2014), 1–5 | DOI | MR | Zbl

[7] C. T. McMullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, 2013 http://www.math.harvard.edu/<nobr>$\sim$</nobr>ctm/papers/