@article{RM_2018_73_4_a6,
author = {A. D. Rukhovich},
title = {On the growth rate of the number of fullerenes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {734--736},
year = {2018},
volume = {73},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/}
}
A. D. Rukhovich. On the growth rate of the number of fullerenes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 734-736. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a6/
[1] V. M. Buchstaber, N. Yu. Erokhovets, Combinatorial and toric homotopy. Introductory lectures, Lecture Notes Ser., Inst. Math. Sci., Natl. Univ. Singapore, 35, World Scientific, Hackensack, NJ, 2018, 67–178 | DOI
[2] W. P. Thurston, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 511–549 | DOI | MR | Zbl
[3] C.-H. Sah, Fullerene Science and Technology, 2:4 (1994), 445–458 | DOI
[4] P. Engel, P. Smillie, 2018 (v1 – 2017), 23 pp., arXiv: 1702.02614
[5] G. Brinkmann, A. W. M. Dress, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR
[6] J. Cioslowski, J. Math. Chem., 52:1 (2014), 1–5 | DOI | MR | Zbl
[7] C. T. McMullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, 2013 http://www.math.harvard.edu/<nobr>$\sim$</nobr>ctm/papers/