Mots-clés : ancient solutions
@article{RM_2018_73_4_a2,
author = {G. A. Seregin and T. N. Shilkin},
title = {Liouville-type theorems for the {Navier{\textendash}Stokes} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {661--724},
year = {2018},
volume = {73},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a2/}
}
G. A. Seregin; T. N. Shilkin. Liouville-type theorems for the Navier–Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 661-724. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a2/
[1] T. Barker, “Local boundary regularity for the Navier–Stokes equations in nonendpoint borderline Lorentz spaces”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 45, Posvyaschaetsya yubileyu Grigoriya Aleksandrovicha Seregina, Zap. nauch. sem. POMI, 444, POMI, SPb., 2016, 15–46 ; J. Math. Sci. (N. Y.), 224:3 (2017), 391–413 | MR | Zbl | DOI
[2] T. Barker, G. Seregin, “Ancient solutions to Navier–Stokes equations in half space”, J. Math. Fluid Mech., 17:3 (2015), 551–575 | DOI | MR | Zbl
[3] T. Barker, G. Seregin, On blowup of nonendpoint borderline Lorentz norms for the Navier–Stokes equations, 2015, 15 pp., arXiv: 1510.09178
[4] T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier–Stokes equation, 2018 (v1 – 2017), 35 pp., arXiv: 1709.10033
[5] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl
[6] D. Chae, “Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations”, Comm. Math. Phys., 326:1 (2014), 37–48 | DOI | MR | Zbl
[7] D. Chae, S. Weng, “Liouville type theorems for the steady axially symmetric Navier–Stokes and magnetohydrodynamic equations”, Discrete Contin. Dyn. Syst., 36:10 (2016), 5267–5285 | DOI | MR | Zbl
[8] D. Chae, J. Wolf, “On Liouville type theorems for the steady Navier–Stokes equations in $\mathbb R^3$”, J. Differential Equations, 261:10 (2016), 5541–5560 | DOI | MR | Zbl
[9] D. Chae, J. Wolf, “On the Liouville type theorems for self-similar solutions to the Navier–Stokes equations”, Arch. Ration. Mech. Anal., 225:1 (2017), 549–572 | DOI | MR | Zbl
[10] D. Chae, T. Yoneda, “On the Liouville theorem for the stationary Navier–Stokes equations in a critical space”, J. Math. Anal. Appl., 405:2 (2013), 706–710 | DOI | MR | Zbl
[11] H. Dong, D. Du, “On the local smoothness of solutions of the Navier–Stokes equations”, J. Math. Fluid Mech., 9:2 (2007), 139–152 | DOI | MR | Zbl
[12] L. Escauriaza, G. A. Seregin, V. Shverak, “$L_{3,\infty}$-solutions of Navier–Stokes equations and backward uniqueness”, Russian Math. Surveys, 58:2 (2003), 211–250 | DOI | DOI | MR | Zbl
[13] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer Monogr. Math., 2nd ed., Springer, New York, 2011, xiv+1018 pp. | DOI | MR | Zbl
[14] Y. Giga, P.-Y. Hsu, Y. Maekawa, “A Liouville theorem for the planer Navier–Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion”, Comm. Partial Differential Equations, 39:10 (2014), 1906–1935 | DOI | MR | Zbl
[15] D. Gilbarg, H. F. Weinberger, “Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:2 (1978), 381–404 | MR | Zbl
[16] J. Guillod, V. Šverák, Numerical investigations of non-uniqueness for the Navier–Stokes initial value problem in borderline spaces, 2017, 31 pp., arXiv: 1704.00560
[17] S. Gustafson, K. Kang, T.-P. Tsai, “Interiour regularity criteria for suitable weak solutions of the Navier–Stokes equations”, Comm. Math. Phys., 273:1 (2007), 161–176 | DOI | MR | Zbl
[18] H. Jia, G. Seregin, V. Šverák, “Liouville theorems in unbounded domains for the time-dependent Stokes system”, J. Math. Phys., 53:11 (2012), 115604, 9 pp. | DOI | MR | Zbl
[19] H. Jia, G. Seregin, V. Sverak, “A Liouville theorem for the Stokes system in half-space”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 43, Zap. nauch. sem. POMI, 410, POMI, SPb., 2013, 25–35 | MR | Zbl
[20] H. Jia, V. Sverak, “Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space?”, J. Funct. Anal., 268:12 (2015), 3734–3766 | DOI | MR | Zbl
[21] T. Kato, “Strong $L^p$-solutions of the Navier–Stokes equation in $R^m$, with applications to weak solutions”, Math. Z., 187:4 (1984), 471–480 | DOI | MR | Zbl
[22] A. A. Kiselev, O. A. Ladyženskaya, “On the existence and uniqueness of solutions of the non-stationary problems for flows of noncompressible fluids”, Amer. Math. Soc. Transl. Ser. 2, 24, Amer. Math. Soc., Providence, RI, 1963, 79–106 | DOI | MR | Zbl
[23] G. Koch, N. Nadirashvili, G. A. Seregin, V. Šverák, “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl
[24] H. Kozono, H. Sohr, “Remarks on uniqueness of weak solutions to the Navier–Stokes equations”, Analysis, 16:3 (1996), 255–271 | DOI | MR | Zbl
[25] O. A. Ladyzhenskaya, “Uniqueness and smoothness of generalized solutions of the Navier–Stokes equation”, Semin. Math., 5, V. A. Steklov Math. Inst., Leningrad, 1969, 60–66 | MR | Zbl
[26] O. A. Ladyzhenskaya, “Unique solvability in the large of three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry”, Semin. Math., 7, V. A. Steklov Math. Inst., Leningrad, 1968, 70–79 | MR | Zbl
[27] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd eng. ed., rev. and enlarged, Gordon and Breach Science Publishers, New York–London–Paris, 1969, xviii+224 pp. | MR | MR | Zbl | Zbl
[28] O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286 | DOI | DOI | MR | Zbl
[29] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl
[30] S. Leonardi, J. Málek, J. Nečas, M. Pokorný, “On axially symmetric flows in $\mathbb R^3$”, Z. Anal. Anwendungen, 18:3 (1999), 639–649 | DOI | MR | Zbl
[31] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[32] F. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[33] A. I. Nazarov, N. N. Ural'tseva, “The Harnack inequality and related properties for solutions of elliptic and parabolic equations with divergence-free lower-order coefficients”, St. Petersburg Math. J., 23:1 (2012), 93–115 | DOI | MR | Zbl
[34] G. Prodi, “Un teorema di unicità per le equazioni di Navier–Stokes”, Ann. Mat. Pura Appl. (4), 48 (1959), 173–182 | DOI | MR | Zbl
[35] V. Scheffer, “Partial regularity of solutions to the Navier–Stokes equations”, Pacific J. Math., 66:2 (1976), 535–552 | DOI | MR | Zbl
[36] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55:2 (1977), 97–112 | DOI | MR | Zbl
[37] M. Schonbek, G. Seregin, “Time decay for solutions to the Stokes equations with drift”, Commun. Contemp. Math., 20:3 (2018), 1750046, 19 pp. | DOI | MR | Zbl
[38] G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Russian Math. Surveys, 62:3 (2007), 595–614 | DOI | DOI | MR | Zbl
[39] G. Seregin, “A certain necessary condition of potential blow up for Navier–Stokes equations”, Comm. Math. Phys., 312:3 (2012), 833–845 | DOI | MR | Zbl
[40] G. Seregin, “Liouville theorem for 2D Navier–Stokes equations in a half space”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 44, Posvyaschaetsya yubileyu Vsevoloda Alekseevicha Solonnikova, Zap. nauch. sem. POMI, 425, POMI, SPb., 2014, 137–148 ; J. Math. Sci. (N. Y.), 210:6 (2015), 849–856 | Zbl | DOI | MR
[41] G. Seregin, Lecture notes on regularity theory for the Navier–Stokes equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, x+258 pp. | DOI | MR | Zbl
[42] G. Seregin, “A Liouville type theorem for steady-state Navier–Stokes equations”, 2016, 7 pp., arXiv: 1611.01563
[43] G. Seregin, “Liouville type theorem for stationary Navier–Stokes equations”, Nonlinearity, 29:8 (2016), 2191–2195 | DOI | MR | Zbl
[44] G. Seregin, “Remarks on Liouville type theorems for steady-state Navier–Stokes equations”, Algebra i analiz, 30:2 (2018), 238–248
[45] G. A. Seregin, T. N. Shilkin, “The local regularity theory for the Navier–Stokes equations near the boundary”, Proceedings of the St. Petersburg Mathematical Society, v. XV, Amer. Math. Soc. Transl. Ser. 2, 232, Advances in mathematical analysis of partial differential equations, Amer. Math. Soc., Providence, RI, 2014, 219–244 | DOI | MR | Zbl
[46] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, “On divergence-free drifts”, J. Differential Equations, 252:1 (2012), 505–540 | DOI | MR | Zbl
[47] G. Seregin, V. Šverák, “On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations, 34:2 (2009), 171–201 | DOI | MR | Zbl
[48] G. Seregin, V. Šverák, “Rescalings at possible singularities of Navier–Stokes equations in half-space”, Algebra i analiz, 25:5 (2013), 146–172 ; St. Petersburg Math. J., 25:5 (2014), 815–833 | MR | Zbl | DOI
[49] G. Seregin, V. Šverák, “Regularity criteria for Navier–Stokes solutions”, Handbook of mathematical analysis in mechanics of viscous fluids, Springer, Cham, 2018, 1–38 | DOI
[50] W. Zajaczkowski, G. A. Seregin, “Sufficient condition of local regularity for the Navier–Stokes equations”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 37, Zap. nauch. sem. POMI, 336, POMI, SPb., 2006, 46–54 ; J. Math. Sci. (N. Y.), 143:2 (2007), 2869–2874 | MR | Zbl | DOI
[51] J. Serrin, “The initial value problem for the Navier–Stokes equations”, Nonlinear problems (Madison, WI, 1962), Univ. of Wisconsin Press, Madison, WI, 1963, 69–98 | MR | Zbl
[52] V. A. Solonnikov, “Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations”, Amer. Math. Soc. Transl. Ser. 2, 75, Amer. Math. Soc., Providence, RI, 1968, 1–116 | DOI | MR | Zbl
[53] V. A. Solonnikov, “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zap. nauch. sem. LOMI, 38, Izd-vo “Nauka”, Leningrad. otd., L., 1973, 153–231 | MR | Zbl
[54] V. A. Solonnikov, “On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator”, Russian Math. Surveys, 58:2 (2003), 331–365 | DOI | DOI | MR | Zbl
[55] M. Struwe, “On partial regularity results for the Navier–Stokes equations”, Comm. Pure Appl. Math., 41:4 (1988), 437–458 | DOI | MR | Zbl