New aspects of complexity theory for 3-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 615-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recent developments in the theory of complexity for three-dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev–Viro invariants and hyperbolic volumes of 3-manifolds. Bibliography: 89 titles.
Keywords: 3-manifolds, Matveev complexity, tetrahedral complexity, spines.
Mots-clés : triangulations
@article{RM_2018_73_4_a1,
     author = {A. Yu. Vesnin and S. V. Matveev and E. A. Fominykh},
     title = {New aspects of complexity theory for 3-manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {615--660},
     year = {2018},
     volume = {73},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - S. V. Matveev
AU  - E. A. Fominykh
TI  - New aspects of complexity theory for 3-manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 615
EP  - 660
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/
LA  - en
ID  - RM_2018_73_4_a1
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A S. V. Matveev
%A E. A. Fominykh
%T New aspects of complexity theory for 3-manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 615-660
%V 73
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/
%G en
%F RM_2018_73_4_a1
A. Yu. Vesnin; S. V. Matveev; E. A. Fominykh. New aspects of complexity theory for 3-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 615-660. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/

[1] G. Amendola, B. Martelli, “Non-orientable 3-manifolds of complexity up to 7”, Topology Appl., 150:1-3 (2005), 179–195 | DOI | MR | Zbl

[2] S. Anisov, “Exact values of complexity for an infinite number of 3-manifolds”, Mosc. Math. J., 5:2 (2005), 305–310 | MR | Zbl

[3] R. Benedetti, C. Petronio, “A finite graphic calculus for 3-manifolds”, Manuscripta Math., 88:3 (1995), 291–310 | DOI | MR | Zbl

[4] V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Pak, “Kogomologicheskaya zhestkost mnogoobrazii, zadavaemykh trekhmernymi mnogogrannikami”, UMN, 72:2(434) (2017), 3–66 | DOI | MR | Zbl

[5] V. M. Bukhshtaber, T. E. Panov, “O mnogoobraziyakh, zadavaemykh 4-raskraskami prostykh 3-mnogogrannikov”, UMN, 71:6(432) (2016), 157–158 | DOI | MR | Zbl

[6] G. Burde, H. Zieschang, Knots, de Gruyter Stud. Math., 5, Walter de Gruyter Co., Berlin, 1985, xii+399 pp. | MR | Zbl

[7] B. A. Burton, “Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find”, Discrete Comput. Geom., 38:3 (2007), 527–571 | DOI | MR | Zbl

[8] B. A. Burton, “A duplicate pair in the SnapPea census”, Exp. Math., 23:2 (2014), 170–173 | DOI | MR | Zbl

[9] B. A. Burton, “The cusped hyperbolic census is complete”, Trans. Amer. Math. Soc. (to appear); 2014, 32 pp., arXiv: 1405.2695

[10] B. A. Burton, R. Budney, W. Pettersson, et al., Regina: Software for low-dimensional topology, 1999–2017 https://regina-normal.github.io/

[11] P. J. Callahan, M. V. Hildebrand, J. R. Weeks, “A census of cusped hyperbolic 3-manifolds. With microfiche supplement”, Math. Comp., 68:225 (1999), 321–332 | DOI | MR | Zbl

[12] B. G. Casler, “An imbedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16:4 (1965), 559–566 | DOI | MR | Zbl

[13] A. Champanerkar, I. Kofman, T. Mullen, “The 500 simplest hyperbolic knots”, J. Knot Theory Ramifications, 23:12 (2014), 1450055, 34 pp. | DOI | MR | Zbl

[14] M. Culler, N. M. Dunfield, M. Goerner, J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds http://snappy.computop.org/

[15] D. B. A. Epstein, R. C. Penner, “Euclidean decompositions of noncompact hyperbolic manifolds”, J. Differential Geom., 27:1 (1988), 67–80 | DOI | MR | Zbl

[16] E. A. Fominykh, “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. matem. zhurn., 52:3 (2011), 680–689 | MR | Zbl

[17] E. A. Fominykh, “Verkhnie otsenki slozhnosti mnogoobrazii, skleennykh iz dvukh mnogoobrazii Zeiferta s bazoi disk i dvumya osobymi sloyami”, Vestnik KemGU, 3/2 (2011), 83–88

[18] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A census of tetrahedral hyperbolic manifolds”, Exp. Math., 25:4 (2016), 466–481 | DOI | MR | Zbl

[19] E. A. Fominykh, M. A. Ovchinnikov, “On the complexity of graph-manifolds”, Sib. elektron. matem. izv., 2 (2005), 190–191 | MR | Zbl

[20] E. Fominykh, B. Wiest, “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramifications, 22:10 (2013), 1350053, 19 pp. | DOI | MR | Zbl

[21] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl

[22] R. Frigerio, B. Martelli, C. Petronio, “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Differential Geom., 64:3 (2003), 425–455 | DOI | MR | Zbl

[23] R. Frigerio, B. Martelli, C. Petronio, “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl

[24] M. Fujii, “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13:2 (1990), 353–373 | DOI | MR | Zbl

[25] D. Futer, E. Kalfagianni, J. S. Purcell, “Denh filling, volume, and the Jones polynomial”, J. Differential Geom., 78:3 (2008), 429–464 | DOI | MR | Zbl

[26] D. Gabai, R. Meyerhoff, P. Milley, “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–1215 | DOI | MR | Zbl

[27] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3-4 (1961), 245–375 | DOI | MR | Zbl

[28] H. Helling, A. C. Kim, J. L. Mennicke, “A geometric study of Fibonacci groups”, J. Lie Theory, 8:1 (1998), 1–23 | MR | Zbl

[29] M. Hildebrand, J. Weeks, “A computer generated census of cusped hyperbolic 3-manifolds”, Computers and mathematics (Cambridge, MA, 1989), Springer, New York, 1989, 53–59 | MR | Zbl

[30] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “The arithmeticity of the figure eight knot orbifolds”, Topology' 90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 169–183 | MR | Zbl

[31] M. Ishikawa, K. Nemoto, “Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities”, Hiroshima Math. J., 46:2 (2016), 149–162 | MR | Zbl

[32] W. Jaco, J. H. Rubinstein, J. Spreer, S. Tillmann, $Z_2$-Thurston norm and complexity of 3-manifolds. II, 2017, 21 pp., arXiv: 1711.10737

[33] W. Jaco, H. Rubinstein, S. Tillmann, “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl

[34] W. Jaco, J. H. Rubinstein, S. Tillmann, “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl

[35] W. Jaco, J. H. Rubinstein, S. Tillmann, “$\mathbb Z_2$-Thurston norm and complexity of 3-manifolds”, Math. Ann., 356:1 (2013), 1–22 | DOI | MR | Zbl

[36] A. Kawauchi, A survey of knot theory, Transl. from the Japan., Birkhäuser Verlag, Basel, 1996, xxii+420 pp. | MR | Zbl

[37] S. Kojima, Y. Miyamoto, “The smallest hyperbolic 3-manifolds with totally geodesic boundary”, J. Differential Geom., 34:1 (1991), 175–192 | DOI | MR | Zbl

[38] M. Lackenby, “The volume of hyperbolic alternating link complements”, Proc. London Math. Soc. (3), 88:1 (2004), 204–224 | DOI | MR | Zbl

[39] K. Maklakhlan, A. U. Rid, Arifmetika trekhmernykh giperbolicheskikh mnogoobrazii, MTsNMO, M., 2014, 544 pp.; C. Maclachlan, A. W. Reid, The arithmetic of hyperbolic 3-manifolds, Grad. Texts in Math., 219, Springer-Verlag, New York, 2003, xiv+463 pp. | DOI | MR | Zbl

[40] B. Martelli, “Complexity of 3-manifolds”, Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006, 91–120 | MR | Zbl

[41] B. Martelli, C. Petronio, “Three-manifolds having complexity at most 9”, Exp. Math., 10:2 (2001), 207–236 | DOI | MR | Zbl

[42] B. Martelli, C. Petronio, “A new decomposition theorem for 3-manifolds”, Illinois J. Math., 46:3 (2002), 755–780 | MR | Zbl

[43] B. Martelli, C. Petronio, “Complexity of geometric 3-manifolds”, Geom. Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl

[44] S. V. Matveev, “Preobrazovaniya spetsialnykh spainov i gipoteza Zimana”, Izv. AN SSSR. Ser. matem., 51:5 (1987), 1104–1116 ; S. V. Matveev, “Transformations of special spines and the Zeeman conjecture”, Math. USSR-Izv., 31:2 (1988), 423–434 | MR | Zbl | DOI

[45] S. V. Matveev, “Universalnye 3-deformatsii spetsialnykh poliedrov”, UMN, 42:3(255) (1987), 193–194 | MR | Zbl

[46] S. V. Matveev, “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. AN SSSR, 301:2 (1988), 280–283 ; S. V. Matveev, “Complexity of three-dimensional manifolds and their enumeration in order of increasing complexity”, Soviet Math. Dokl., 38:1 (1989), 75–78 | MR | Zbl

[47] S. V. Matveev, “Additivnost slozhnosti i metod Khakena v topologii trekhmernykh mnogoobrazii”, Ukr. matem. zhurn., 41:9 (1989), 1234–1239 | MR | Zbl

[48] S. V. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl

[49] S. V. Matveev, Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007, 456 pp.; S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | DOI | MR | Zbl

[50] S. V. Matveev, “Raspoznavanie i tabulirovanie trekhmernykh mnogoobrazii”, Dokl. RAN, 400:1 (2005), 26–28 | MR

[51] S. V. Matveev, “Tabulirovanie trekhmernykh mnogoobrazii”, UMN, 60:4(364) (2005), 97–122 | DOI | MR | Zbl

[52] S. V. Matveev, “Virtual 3-manifolds”, Sib. elektron. matem. izv., 6 (2009), 518–521 | MR | Zbl

[53] S. V. Matveev, A. T. Fomenko, “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, UMN, 43:1(259) (1988), 5–22 | MR | Zbl

[54] S. V. Matveev, D. O. Nikolaev, “Struktura trekhmernykh mnogoobrazii slozhnosti nol”, Dokl. RAN, 455:1 (2014), 15–17 | DOI | MR | Zbl

[55] S. V. Matveev, E. L. Pervova, “Nizhnie otsenki slozhnosti trekhmernykh mnogoobrazii”, Dokl. RAN, 378:2 (2001), 151–152 | MR | Zbl

[56] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl

[57] S. V. Matveev, V. V. Savvateev, “Trekhmernye mnogoobraziya, imeyuschie prostye spetsialnye ostovy”, Colloq. Math., 32 (1974), 83–97 | DOI | MR | Zbl

[58] S. Matveev, V. Tarkaev, et\;al., 3-manifolds recognizer,\par http://www.matlas.math.csu.ru

[59] A. Mednykh, A. Vesnin, “Visualization of the isometry group action on the Fomenko–Matveev–Weeks manifold”, J. Lie Theory, 8:1 (1998), 51–66 | MR | Zbl

[60] A. Mednykh, A. Vesnin, “Covering properties of small volume hyperbolic 3-manifolds”, J. Knot Theory Ramifications, 7:3 (1998), 381–392 | DOI | MR | Zbl

[61] R. Meyerhoff, W. D. Neumann, “An asymptotic formula for the eta invariants of hyperbolic 3-manifolds”, Comment. Math. Helv., 67:1 (1992), 28–46 | DOI | MR | Zbl

[62] J. W. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc. (N. S.), 6:1 (1982), 9–24 | DOI | MR | Zbl

[63] J. Minkus, The branched cyclic coverings of 2 bridge knots and links, Mem. Amer. Math. Soc., 35, No 255, Amer. Math. Soc., Providence, RI, 1982, iv+68 pp. | DOI | MR | Zbl

[64] E. E. Moise, “Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung”, Ann. of Math. (2), 56 (1952), 96–114 | DOI | MR | Zbl

[65] M. Mulazzani, A. Vesnin, “The many faces of cyclic branched coverings of 2-bridge knots and links”, Atti Sem. Mat. Fis. Univ. Modena, 49, suppl. (2001), 177–215 | MR | Zbl

[66] L. Paoluzzi, B. Zimmermann, “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata, 60:2 (1996), 113–123 | DOI | MR | Zbl

[67] C. Petronio, A. Vesnin, “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl

[68] R. Piergallini, “Standard moves for standard polyhedra and spines”, Rend. Circ. Mat. Palermo (2) Suppl., 1988, no. 18, 391–414 | MR | Zbl

[69] H. Seifert, “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60:1 (1933), 147–238 | DOI | MR | Zbl

[70] M. Thistlethwaite, Cusped hyperbolic 3-manifolds constructed from 8 ideal tetrahedra, 2010 http://www.math.utk.edu/~morwen/8tet/

[71] W. P. Thurston, “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, no. 339, Amer. Math. Soc., Providence, RI, 1986, 99–130 | MR | Zbl

[72] W. P. Thurston, Three dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl

[73] V. G. Turaev, O. Y. Viro, “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[74] A. Yu. Vesnin, “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR | Zbl

[75] A. Yu. Vesnin, “Ob'emy trekhmernykh giperbolicheskikh mnogoobrazii Lebellya”, Matem. zametki, 64:1 (1998), 17–23 | DOI | MR | Zbl

[76] A. Yu. Vesnin, “Pryamougolnye mnogogranniki i trekhmernye giperbolicheskie mnogoobraziya”, UMN, 72:2(434) (2017), 147–190 | DOI | MR | Zbl

[77] A. Yu. Vesnin, E. A. Fominykh, “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, Dokl. RAN, 439:6 (2011), 727–729 | MR | Zbl

[78] A. Yu. Vesnin, E. A. Fominykh, “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. matem. zhurn., 53:4 (2012), 781–793 | MR | Zbl

[79] A. Yu. Vesnin, E. A. Fominykh, “Dvustoronnie otsenki slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK “Nauka/Interperiodika”, M., 2014, 65–74 | Zbl

[80] A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektron. matem. izv., 8 (2011), 341–364 | MR | Zbl

[81] A. Yu. Vesnin, S. V. Matveev, K. Petronio, “Dvustoronnie otsenki slozhnosti mnogoobrazii Lebellya”, Dokl. RAN, 416:3 (2007), 295–297 | MR | Zbl

[82] A. Yu. Vesnin, A. D. Mednykh, “Giperbolicheskie ob'emy mnogoobrazii Fibonachchi”, Sib. matem. zhurn., 36:2 (1995), 266–277 | MR | Zbl

[83] A. Yu. Vesnin, A. D. Mednykh, “Mnogoobraziya Fibonachchi kak dvulistnye nakrytiya nad trekhmernoi sferoi i gipoteza Meiergofa–Noimana”, Sib. matem. zhurn., 37:3 (1996), 534–542 | MR | Zbl

[84] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s kaspami”, Dokl. RAN, 456:1 (2014), 11–14 | DOI | MR | Zbl

[85] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Trekhmernye giperbolicheskie mnogoobraziya s kaspami slozhnosti 10, imeyuschie maksimalnyi ob'em”, Tr. IMM UrO RAN, 20, no. 2, 2014, 74–87 ; A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 227–239 | MR | Zbl | DOI

[86] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Trekhmernye mnogoobraziya s bednymi spainami”, Geometriya, topologiya i prilozheniya, Sbornik statei. K 70-letiyu so dnya rozhdeniya professora Nikolaya Petrovicha Dolbilina, Tr. MIAN, 288, MAIK “Nauka/Interperiodika”, M., 2015, 38–48 | DOI | Zbl

[87] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Slozhnost virtualnykh trekhmernykh mnogoobrazii”, Matem. sb., 207:11 (2016), 4–24 | DOI | MR | Zbl

[88] J. Weeks, Hyperbolic structures on 3-manifolds, Ph. D. Thesis, Princeton Univ., Princeton, 1985

[89] E. C. Zeeman, “On the dunce hat”, Topology, 2:4 (1963), 341–358 | DOI | MR | Zbl