Mots-clés : triangulations
@article{RM_2018_73_4_a1,
author = {A. Yu. Vesnin and S. V. Matveev and E. A. Fominykh},
title = {New aspects of complexity theory for 3-manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {615--660},
year = {2018},
volume = {73},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/}
}
TY - JOUR AU - A. Yu. Vesnin AU - S. V. Matveev AU - E. A. Fominykh TI - New aspects of complexity theory for 3-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 615 EP - 660 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/ LA - en ID - RM_2018_73_4_a1 ER -
A. Yu. Vesnin; S. V. Matveev; E. A. Fominykh. New aspects of complexity theory for 3-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 615-660. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/
[1] G. Amendola, B. Martelli, “Non-orientable 3-manifolds of complexity up to 7”, Topology Appl., 150:1-3 (2005), 179–195 | DOI | MR | Zbl
[2] S. Anisov, “Exact values of complexity for an infinite number of 3-manifolds”, Mosc. Math. J., 5:2 (2005), 305–310 | MR | Zbl
[3] R. Benedetti, C. Petronio, “A finite graphic calculus for 3-manifolds”, Manuscripta Math., 88:3 (1995), 291–310 | DOI | MR | Zbl
[4] V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Pak, “Kogomologicheskaya zhestkost mnogoobrazii, zadavaemykh trekhmernymi mnogogrannikami”, UMN, 72:2(434) (2017), 3–66 | DOI | MR | Zbl
[5] V. M. Bukhshtaber, T. E. Panov, “O mnogoobraziyakh, zadavaemykh 4-raskraskami prostykh 3-mnogogrannikov”, UMN, 71:6(432) (2016), 157–158 | DOI | MR | Zbl
[6] G. Burde, H. Zieschang, Knots, de Gruyter Stud. Math., 5, Walter de Gruyter Co., Berlin, 1985, xii+399 pp. | MR | Zbl
[7] B. A. Burton, “Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find”, Discrete Comput. Geom., 38:3 (2007), 527–571 | DOI | MR | Zbl
[8] B. A. Burton, “A duplicate pair in the SnapPea census”, Exp. Math., 23:2 (2014), 170–173 | DOI | MR | Zbl
[9] B. A. Burton, “The cusped hyperbolic census is complete”, Trans. Amer. Math. Soc. (to appear); 2014, 32 pp., arXiv: 1405.2695
[10] B. A. Burton, R. Budney, W. Pettersson, et al., Regina: Software for low-dimensional topology, 1999–2017 https://regina-normal.github.io/
[11] P. J. Callahan, M. V. Hildebrand, J. R. Weeks, “A census of cusped hyperbolic 3-manifolds. With microfiche supplement”, Math. Comp., 68:225 (1999), 321–332 | DOI | MR | Zbl
[12] B. G. Casler, “An imbedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16:4 (1965), 559–566 | DOI | MR | Zbl
[13] A. Champanerkar, I. Kofman, T. Mullen, “The 500 simplest hyperbolic knots”, J. Knot Theory Ramifications, 23:12 (2014), 1450055, 34 pp. | DOI | MR | Zbl
[14] M. Culler, N. M. Dunfield, M. Goerner, J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds http://snappy.computop.org/
[15] D. B. A. Epstein, R. C. Penner, “Euclidean decompositions of noncompact hyperbolic manifolds”, J. Differential Geom., 27:1 (1988), 67–80 | DOI | MR | Zbl
[16] E. A. Fominykh, “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. matem. zhurn., 52:3 (2011), 680–689 | MR | Zbl
[17] E. A. Fominykh, “Verkhnie otsenki slozhnosti mnogoobrazii, skleennykh iz dvukh mnogoobrazii Zeiferta s bazoi disk i dvumya osobymi sloyami”, Vestnik KemGU, 3/2 (2011), 83–88
[18] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A census of tetrahedral hyperbolic manifolds”, Exp. Math., 25:4 (2016), 466–481 | DOI | MR | Zbl
[19] E. A. Fominykh, M. A. Ovchinnikov, “On the complexity of graph-manifolds”, Sib. elektron. matem. izv., 2 (2005), 190–191 | MR | Zbl
[20] E. Fominykh, B. Wiest, “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramifications, 22:10 (2013), 1350053, 19 pp. | DOI | MR | Zbl
[21] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl
[22] R. Frigerio, B. Martelli, C. Petronio, “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Differential Geom., 64:3 (2003), 425–455 | DOI | MR | Zbl
[23] R. Frigerio, B. Martelli, C. Petronio, “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl
[24] M. Fujii, “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13:2 (1990), 353–373 | DOI | MR | Zbl
[25] D. Futer, E. Kalfagianni, J. S. Purcell, “Denh filling, volume, and the Jones polynomial”, J. Differential Geom., 78:3 (2008), 429–464 | DOI | MR | Zbl
[26] D. Gabai, R. Meyerhoff, P. Milley, “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–1215 | DOI | MR | Zbl
[27] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3-4 (1961), 245–375 | DOI | MR | Zbl
[28] H. Helling, A. C. Kim, J. L. Mennicke, “A geometric study of Fibonacci groups”, J. Lie Theory, 8:1 (1998), 1–23 | MR | Zbl
[29] M. Hildebrand, J. Weeks, “A computer generated census of cusped hyperbolic 3-manifolds”, Computers and mathematics (Cambridge, MA, 1989), Springer, New York, 1989, 53–59 | MR | Zbl
[30] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “The arithmeticity of the figure eight knot orbifolds”, Topology' 90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 169–183 | MR | Zbl
[31] M. Ishikawa, K. Nemoto, “Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities”, Hiroshima Math. J., 46:2 (2016), 149–162 | MR | Zbl
[32] W. Jaco, J. H. Rubinstein, J. Spreer, S. Tillmann, $Z_2$-Thurston norm and complexity of 3-manifolds. II, 2017, 21 pp., arXiv: 1711.10737
[33] W. Jaco, H. Rubinstein, S. Tillmann, “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl
[34] W. Jaco, J. H. Rubinstein, S. Tillmann, “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl
[35] W. Jaco, J. H. Rubinstein, S. Tillmann, “$\mathbb Z_2$-Thurston norm and complexity of 3-manifolds”, Math. Ann., 356:1 (2013), 1–22 | DOI | MR | Zbl
[36] A. Kawauchi, A survey of knot theory, Transl. from the Japan., Birkhäuser Verlag, Basel, 1996, xxii+420 pp. | MR | Zbl
[37] S. Kojima, Y. Miyamoto, “The smallest hyperbolic 3-manifolds with totally geodesic boundary”, J. Differential Geom., 34:1 (1991), 175–192 | DOI | MR | Zbl
[38] M. Lackenby, “The volume of hyperbolic alternating link complements”, Proc. London Math. Soc. (3), 88:1 (2004), 204–224 | DOI | MR | Zbl
[39] K. Maklakhlan, A. U. Rid, Arifmetika trekhmernykh giperbolicheskikh mnogoobrazii, MTsNMO, M., 2014, 544 pp.; C. Maclachlan, A. W. Reid, The arithmetic of hyperbolic 3-manifolds, Grad. Texts in Math., 219, Springer-Verlag, New York, 2003, xiv+463 pp. | DOI | MR | Zbl
[40] B. Martelli, “Complexity of 3-manifolds”, Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006, 91–120 | MR | Zbl
[41] B. Martelli, C. Petronio, “Three-manifolds having complexity at most 9”, Exp. Math., 10:2 (2001), 207–236 | DOI | MR | Zbl
[42] B. Martelli, C. Petronio, “A new decomposition theorem for 3-manifolds”, Illinois J. Math., 46:3 (2002), 755–780 | MR | Zbl
[43] B. Martelli, C. Petronio, “Complexity of geometric 3-manifolds”, Geom. Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl
[44] S. V. Matveev, “Preobrazovaniya spetsialnykh spainov i gipoteza Zimana”, Izv. AN SSSR. Ser. matem., 51:5 (1987), 1104–1116 ; S. V. Matveev, “Transformations of special spines and the Zeeman conjecture”, Math. USSR-Izv., 31:2 (1988), 423–434 | MR | Zbl | DOI
[45] S. V. Matveev, “Universalnye 3-deformatsii spetsialnykh poliedrov”, UMN, 42:3(255) (1987), 193–194 | MR | Zbl
[46] S. V. Matveev, “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. AN SSSR, 301:2 (1988), 280–283 ; S. V. Matveev, “Complexity of three-dimensional manifolds and their enumeration in order of increasing complexity”, Soviet Math. Dokl., 38:1 (1989), 75–78 | MR | Zbl
[47] S. V. Matveev, “Additivnost slozhnosti i metod Khakena v topologii trekhmernykh mnogoobrazii”, Ukr. matem. zhurn., 41:9 (1989), 1234–1239 | MR | Zbl
[48] S. V. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl
[49] S. V. Matveev, Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007, 456 pp.; S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | DOI | MR | Zbl
[50] S. V. Matveev, “Raspoznavanie i tabulirovanie trekhmernykh mnogoobrazii”, Dokl. RAN, 400:1 (2005), 26–28 | MR
[51] S. V. Matveev, “Tabulirovanie trekhmernykh mnogoobrazii”, UMN, 60:4(364) (2005), 97–122 | DOI | MR | Zbl
[52] S. V. Matveev, “Virtual 3-manifolds”, Sib. elektron. matem. izv., 6 (2009), 518–521 | MR | Zbl
[53] S. V. Matveev, A. T. Fomenko, “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, UMN, 43:1(259) (1988), 5–22 | MR | Zbl
[54] S. V. Matveev, D. O. Nikolaev, “Struktura trekhmernykh mnogoobrazii slozhnosti nol”, Dokl. RAN, 455:1 (2014), 15–17 | DOI | MR | Zbl
[55] S. V. Matveev, E. L. Pervova, “Nizhnie otsenki slozhnosti trekhmernykh mnogoobrazii”, Dokl. RAN, 378:2 (2001), 151–152 | MR | Zbl
[56] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl
[57] S. V. Matveev, V. V. Savvateev, “Trekhmernye mnogoobraziya, imeyuschie prostye spetsialnye ostovy”, Colloq. Math., 32 (1974), 83–97 | DOI | MR | Zbl
[58] S. Matveev, V. Tarkaev, et\;al., 3-manifolds recognizer,\par http://www.matlas.math.csu.ru
[59] A. Mednykh, A. Vesnin, “Visualization of the isometry group action on the Fomenko–Matveev–Weeks manifold”, J. Lie Theory, 8:1 (1998), 51–66 | MR | Zbl
[60] A. Mednykh, A. Vesnin, “Covering properties of small volume hyperbolic 3-manifolds”, J. Knot Theory Ramifications, 7:3 (1998), 381–392 | DOI | MR | Zbl
[61] R. Meyerhoff, W. D. Neumann, “An asymptotic formula for the eta invariants of hyperbolic 3-manifolds”, Comment. Math. Helv., 67:1 (1992), 28–46 | DOI | MR | Zbl
[62] J. W. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc. (N. S.), 6:1 (1982), 9–24 | DOI | MR | Zbl
[63] J. Minkus, The branched cyclic coverings of 2 bridge knots and links, Mem. Amer. Math. Soc., 35, No 255, Amer. Math. Soc., Providence, RI, 1982, iv+68 pp. | DOI | MR | Zbl
[64] E. E. Moise, “Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung”, Ann. of Math. (2), 56 (1952), 96–114 | DOI | MR | Zbl
[65] M. Mulazzani, A. Vesnin, “The many faces of cyclic branched coverings of 2-bridge knots and links”, Atti Sem. Mat. Fis. Univ. Modena, 49, suppl. (2001), 177–215 | MR | Zbl
[66] L. Paoluzzi, B. Zimmermann, “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata, 60:2 (1996), 113–123 | DOI | MR | Zbl
[67] C. Petronio, A. Vesnin, “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl
[68] R. Piergallini, “Standard moves for standard polyhedra and spines”, Rend. Circ. Mat. Palermo (2) Suppl., 1988, no. 18, 391–414 | MR | Zbl
[69] H. Seifert, “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60:1 (1933), 147–238 | DOI | MR | Zbl
[70] M. Thistlethwaite, Cusped hyperbolic 3-manifolds constructed from 8 ideal tetrahedra, 2010 http://www.math.utk.edu/~morwen/8tet/
[71] W. P. Thurston, “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, no. 339, Amer. Math. Soc., Providence, RI, 1986, 99–130 | MR | Zbl
[72] W. P. Thurston, Three dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl
[73] V. G. Turaev, O. Y. Viro, “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl
[74] A. Yu. Vesnin, “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR | Zbl
[75] A. Yu. Vesnin, “Ob'emy trekhmernykh giperbolicheskikh mnogoobrazii Lebellya”, Matem. zametki, 64:1 (1998), 17–23 | DOI | MR | Zbl
[76] A. Yu. Vesnin, “Pryamougolnye mnogogranniki i trekhmernye giperbolicheskie mnogoobraziya”, UMN, 72:2(434) (2017), 147–190 | DOI | MR | Zbl
[77] A. Yu. Vesnin, E. A. Fominykh, “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, Dokl. RAN, 439:6 (2011), 727–729 | MR | Zbl
[78] A. Yu. Vesnin, E. A. Fominykh, “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. matem. zhurn., 53:4 (2012), 781–793 | MR | Zbl
[79] A. Yu. Vesnin, E. A. Fominykh, “Dvustoronnie otsenki slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK “Nauka/Interperiodika”, M., 2014, 65–74 | Zbl
[80] A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektron. matem. izv., 8 (2011), 341–364 | MR | Zbl
[81] A. Yu. Vesnin, S. V. Matveev, K. Petronio, “Dvustoronnie otsenki slozhnosti mnogoobrazii Lebellya”, Dokl. RAN, 416:3 (2007), 295–297 | MR | Zbl
[82] A. Yu. Vesnin, A. D. Mednykh, “Giperbolicheskie ob'emy mnogoobrazii Fibonachchi”, Sib. matem. zhurn., 36:2 (1995), 266–277 | MR | Zbl
[83] A. Yu. Vesnin, A. D. Mednykh, “Mnogoobraziya Fibonachchi kak dvulistnye nakrytiya nad trekhmernoi sferoi i gipoteza Meiergofa–Noimana”, Sib. matem. zhurn., 37:3 (1996), 534–542 | MR | Zbl
[84] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s kaspami”, Dokl. RAN, 456:1 (2014), 11–14 | DOI | MR | Zbl
[85] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Trekhmernye giperbolicheskie mnogoobraziya s kaspami slozhnosti 10, imeyuschie maksimalnyi ob'em”, Tr. IMM UrO RAN, 20, no. 2, 2014, 74–87 ; A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 227–239 | MR | Zbl | DOI
[86] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Trekhmernye mnogoobraziya s bednymi spainami”, Geometriya, topologiya i prilozheniya, Sbornik statei. K 70-letiyu so dnya rozhdeniya professora Nikolaya Petrovicha Dolbilina, Tr. MIAN, 288, MAIK “Nauka/Interperiodika”, M., 2015, 38–48 | DOI | Zbl
[87] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Slozhnost virtualnykh trekhmernykh mnogoobrazii”, Matem. sb., 207:11 (2016), 4–24 | DOI | MR | Zbl
[88] J. Weeks, Hyperbolic structures on 3-manifolds, Ph. D. Thesis, Princeton Univ., Princeton, 1985
[89] E. C. Zeeman, “On the dunce hat”, Topology, 2:4 (1963), 341–358 | DOI | MR | Zbl