New aspects of complexity theory for 3-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 615-660
Voir la notice de l'article provenant de la source Math-Net.Ru
Recent developments in the theory of complexity for three-dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev–Viro invariants and hyperbolic volumes of 3-manifolds.
Bibliography: 89 titles.
Keywords:
3-manifolds, Matveev complexity, tetrahedral complexity, spines.
Mots-clés : triangulations
Mots-clés : triangulations
@article{RM_2018_73_4_a1,
author = {A. Yu. Vesnin and S. V. Matveev and E. A. Fominykh},
title = {New aspects of complexity theory for 3-manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {615--660},
publisher = {mathdoc},
volume = {73},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/}
}
TY - JOUR AU - A. Yu. Vesnin AU - S. V. Matveev AU - E. A. Fominykh TI - New aspects of complexity theory for 3-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 615 EP - 660 VL - 73 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/ LA - en ID - RM_2018_73_4_a1 ER -
A. Yu. Vesnin; S. V. Matveev; E. A. Fominykh. New aspects of complexity theory for 3-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 615-660. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a1/