Mots-clés : RC
@article{RM_2018_73_4_a0,
author = {L. D. Beklemishev},
title = {Reflection calculus and conservativity spectra},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {569--613},
year = {2018},
volume = {73},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_4_a0/}
}
L. D. Beklemishev. Reflection calculus and conservativity spectra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 4, pp. 569-613. http://geodesic.mathdoc.fr/item/RM_2018_73_4_a0/
[1] L. Beklemishev, “Iterated local reflection versus iterated consistency”, Ann. Pure Appl. Logic, 75:1-2 (1995), 25–48 | DOI | MR | Zbl
[2] L. D. Beklemishev, “Proof-theoretic analysis by iterated reflection”, Arch. Math. Logic, 42:6 (2003), 515–552 | DOI | MR | Zbl
[3] L. D. Beklemishev, “Provability algebras and proof-theoretic ordinals. I”, Ann. Pure Appl. Logic, 128:1-3 (2004), 103–123 | DOI | MR | Zbl
[4] L. D. Beklemishev, “Reflection principles and provability algebras in formal arithmetic”, Russian Math. Surveys, 60:2 (2005), 197–268 | DOI | DOI | MR | Zbl
[5] L. D. Beklemishev, “The Worm principle”, Logic colloquium{' }02 (Münster, Germany, August 3–11, 2002), Lect. Notes Log., 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, 75–95 ; Preprint, Logic Group Preprint Series, 219, Utrecht Univ., Utrecht, 2003, 23 pp. https://dspace.library.uu.nl/handle/1874/27024 | MR | Zbl
[6] L. Beklemishev, “Calibrating provability logic: from modal logic to reflection calculus”, Advances in Modal Logic, Copenhagen, 2012, v. 9, Coll. Publ., London, 2012, 89–94 | MR | Zbl
[7] L. Beklemishev, “Positive provability logic for uniform reflection principles”, Ann. Pure Appl. Logic, 165:1 (2014), 82–105 | DOI | MR | Zbl
[8] L. D. Beklemishev, “Proof theoretic analysis by iterated reflection”, Turing's revolution, Birkhäuser/Springer, Cham, 2015, 225–270 | DOI | MR | Zbl
[9] L. D. Beklemishev, “On the reflection calculus with partial conservativity operators”, Logic, language, information, and computation, Lecture Notes in Comput. Sci., 10388, Springer, Berlin, 2017, 48–67 | DOI | MR | Zbl
[10] L. D. Beklemishev, “On the reduction property for GLP-algebras”, Dokl. Math., 95:1 (2017), 50–54 | DOI | DOI | MR | Zbl
[11] L. D. Beklemishev, “A note on strictly positive logics and word rewriting systems”, Larisa Maximova on implication, interpolation, and definability, Outstanding Contributions to Logic, 15, Springer, Cham, 2018, 61–70 | DOI
[12] L. D. Beklemishev, “A universal algebra for the variable-free fragment of $\mathrm{RC}^\nabla$”, Logical Foundations of Computer Science, Lecture Notes in Comput. Sci., 10703, Springer, Cham, 2018, 91–106 | DOI | MR | Zbl
[13] L. D. Beklemishev, A universal Kripke frame for the variable-free fragment of $\mathrm{RC}^\nabla$, 2018, 5 pp., arXiv: 1804.02641
[14] L. D. Beklemishev, D. Fernández-Duque, J. J. Joosten, “On provability logics with linearly ordered modalities”, Studia Logica, 102:3 (2014), 541–566 ; (2012), 28 pp., arXiv: 1210.4809 | DOI | MR | Zbl
[15] L. D. Beklemishev, J. J. Joosten, M. Vervoort, “A finitary treatment of the closed fragment of Japaridze's provability logic”, J. Logic Comput., 15:4 (2005), 447–463 | DOI | MR | Zbl
[16] L. D. Beklemishev, A. A. Onoprienko, “On some slowly terminating term rewriting systems”, Sb. Math., 206:9 (2015), 1173–1190 | DOI | DOI | MR | Zbl
[17] G. Boolos, The logic of provability, Cambridge Univ. Press, Cambridge, 1993, xxxvi+276 pp. | MR | Zbl
[18] A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, Oxford Univ. Press, New York, 1997, xvi+605 pp. | MR | Zbl
[19] E. V. Dashkov, “On the positive fragment of the polymodal provability logic $\mathrm{GLP}$”, Math. Notes, 91:3 (2012), 318–333 | DOI | DOI | MR | Zbl
[20] A. de Almeida Borges, J. J. Joosten, The Worm calculus, 2018, 19 pp., arXiv: 1803.10543v1
[21] G. Japaridze, D. de Jongh, “The logic of provability”, Handbook of Proof Theory, Stud. Logic Found. Math., 137, North-Holland, Amsterdam, 1998, 475–546 | DOI | MR | Zbl
[22] S. Feferman, “Arithmetization of metamathematics in a general setting”, Fund. Math., 49 (1960), 35–92 | DOI | MR | Zbl
[23] S. Feferman, “Transfinite recursive progressions of axiomatic theories”, J. Symbolic Logic, 27:3 (1962), 259–316 | DOI | MR | Zbl
[24] D. Fernández-Duque, J. J. Joosten, “Models of transfinite provability logic”, J. Symbolic Logic, 78:2 (2013), 543–561 | DOI | MR | Zbl
[25] E. Goris, J. J. Joosten, “A new principle in the interpretability logic of all reasonable arithmetical theories”, Log. J. IGPL, 19:1 (2011), 14–17 | DOI | MR | Zbl
[26] P. Hájek, F. Montagna, “The logic of $\Pi_1$-conservativity”, Arch. Math. Logic, 30:2 (1990), 113–123 | DOI | MR | Zbl
[27] P. Hájek, F. Montagna, “The logic of $\Pi_1$-conservativity continued”, Arch. Math. Logic, 32:1 (1992), 57–63 | DOI | MR | Zbl
[28] P. Hájek, P. Pudlák, Metamathematics of first-order arithmetic, Perspect. Math. Logic, Springer-Verlag, Berlin, 1993, xiv+460 pp. | MR | Zbl
[29] E. Hermo Reyes, J. J. Joosten, The logic of Turing progressions, 2017 (v1 – 2016), 33 pp., arXiv: 1604.08705v2
[30] E. Hermo Reyes, J. J. Joosten, Relational semantics for the Turing Schmerl calculus, 2018 (v1 – 2017), 17 pp., arXiv: 1709.04715
[31] T. Icard, “A topological study of the closed fragment of GLP”, J. Logic Comput., 21:4 (2011), 683–696 | DOI | MR | Zbl
[32] K. N. Ignatiev, Partial conservativity and modal logics, Preprint X-91-04, ITLI Prepublication Series, Institute for Language, Logic, and Information, Univ. of Amsterdam, Amsterdam, 1991, 43 pp. https://eprints.illc.uva.nl/id/eprint/597
[33] K. N. Ignatiev, “On strong provability predicates and the associated modal logics”, J. Symbolic Logic, 58:1 (1993), 249–290 | DOI | MR | Zbl
[34] M. Jackson, “Semilattices with closure”, Algebra Universalis, 52:1 (2004), 1–37 | DOI | MR | Zbl
[35] G. K. Dzhaparidze, Modalno-logicheskie sredstva issledovaniya dokazuemosti, Diss. ... kand. filos. nauk, MGU, M., 1986, 177 pp.
[36] J. J. Joosten, “Turing–Taylor expansions of arithmetical theories”, Studia Logica, 104:6 (2016), 1225–1243 | DOI | MR | Zbl
[37] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, M. Zakharyaschev, “On the completeness of $\mathrm{EL}$-equiations: first results”, Advances in modal logic, Short papers (Budapest, 2016), v. 11, Coll. Publ., London, 2016, 82–87
[38] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, M. Zakharyaschev, Kripke completeness of strictly positive modal logics over meet-semilattices with operators, 2017, 54 pp., arXiv: 1708.03403
[39] G. Kreisel, A. Lévy, “Reflection principles and their use for establishing the complexity of axiomatic systems”, Z. Math. Logik Grundlagen Math., 14 (1968), 97–142 | DOI | MR | Zbl
[40] F. Pakhomov, “On the complexity of the closed fragment of Japaridze's provability logic”, Arch. Math. Logic, 53:7-8 (2014), 949–967 | DOI | MR | Zbl
[41] F. N. Pakhomov, “On elementary theories of ordinal notation systems based on reflection principles”, Proc. Steklov Inst. Math., 289 (2015), 194–212 | DOI | DOI | MR | Zbl
[42] I. Shapirovsky, “PSPACE-decidability of Japaridze's polymodal logic”, Advances in modal logic (Nancy, 2008), v. 7, Coll. Publ., London, 2008, 289–304 | MR | Zbl
[43] C. Smoryński, Self-reference and modal logic, Universitext, Springer-Verlag, Berlin, 1985, xii+333 pp. | DOI | MR | Zbl
[44] A. M. Turing, “System of logic based on ordinals”, Proc. London Math. Soc. (2), 45:3 (1939), 161–228 | DOI | MR | Zbl
[45] A. Visser, “An overview of interpretability logic”, Advances in modal logic (Berlin, 1996), v. 1, CSLI Lecture Notes, 87, CSLI Publ., Stanford, CA, 1998, 307–359 | MR | Zbl
[46] A. Visser, An overview of interpretability logic, Preprint, Logic Group Preprint Series, 174, Utrecht Univ., Utrecht, 2008, 23\;pp. https://dspace.library.uu.nl/handle/1874/26867