Elliptic operators associated with groups of quantized canonical transformations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 546-548
@article{RM_2018_73_3_a5,
author = {A. Yu. Savin and B. Yu. Sternin and E. Schrohe},
title = {Elliptic operators associated with groups of quantized canonical transformations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {546--548},
year = {2018},
volume = {73},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_3_a5/}
}
TY - JOUR AU - A. Yu. Savin AU - B. Yu. Sternin AU - E. Schrohe TI - Elliptic operators associated with groups of quantized canonical transformations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 546 EP - 548 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2018_73_3_a5/ LA - en ID - RM_2018_73_3_a5 ER -
%0 Journal Article %A A. Yu. Savin %A B. Yu. Sternin %A E. Schrohe %T Elliptic operators associated with groups of quantized canonical transformations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 546-548 %V 73 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2018_73_3_a5/ %G en %F RM_2018_73_3_a5
A. Yu. Savin; B. Yu. Sternin; E. Schrohe. Elliptic operators associated with groups of quantized canonical transformations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 546-548. http://geodesic.mathdoc.fr/item/RM_2018_73_3_a5/
[1] A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994, viii+504 pp. | MR | Zbl
[2] A. Connes, C. R. Acad. Sci. Paris Sér. A-B, 290:13 (1980), A599–A604 | MR | Zbl
[3] V. E. Nazaikinskii, V. G. Oshmyan, B. Yu. Sternin, V. E. Shatalov, UMN, 36:2(218) (1981), 81–140 | DOI | MR | Zbl
[4] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry. Nonlocal elliptic operators, Oper. Theory Adv. Appl., 183, Birkhäuser Verlag, Basel, 2008, xii+224 pp. | MR | Zbl