Vladimir Aleksandrovich Voevodsky (obituary)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 519-531
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2018_73_3_a2,
     author = {A. A. Beilinson and A. S. Vishik and D. A. Kazhdan and M. M. Kapranov and A. S. Merkurjev and D. O. Orlov and I. A. Panin and A. A. Suslin and N. A. Tyurin and G. B. Shabat},
     title = {Vladimir {Aleksandrovich} {Voevodsky} (obituary)},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {519--531},
     year = {2018},
     volume = {73},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_3_a2/}
}
TY  - JOUR
AU  - A. A. Beilinson
AU  - A. S. Vishik
AU  - D. A. Kazhdan
AU  - M. M. Kapranov
AU  - A. S. Merkurjev
AU  - D. O. Orlov
AU  - I. A. Panin
AU  - A. A. Suslin
AU  - N. A. Tyurin
AU  - G. B. Shabat
TI  - Vladimir Aleksandrovich Voevodsky (obituary)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 519
EP  - 531
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_3_a2/
LA  - en
ID  - RM_2018_73_3_a2
ER  - 
%0 Journal Article
%A A. A. Beilinson
%A A. S. Vishik
%A D. A. Kazhdan
%A M. M. Kapranov
%A A. S. Merkurjev
%A D. O. Orlov
%A I. A. Panin
%A A. A. Suslin
%A N. A. Tyurin
%A G. B. Shabat
%T Vladimir Aleksandrovich Voevodsky (obituary)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 519-531
%V 73
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2018_73_3_a2/
%G en
%F RM_2018_73_3_a2
A. A. Beilinson; A. S. Vishik; D. A. Kazhdan; M. M. Kapranov; A. S. Merkurjev; D. O. Orlov; I. A. Panin; A. A. Suslin; N. A. Tyurin; G. B. Shabat. Vladimir Aleksandrovich Voevodsky (obituary). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 519-531. http://geodesic.mathdoc.fr/item/RM_2018_73_3_a2/

[1] “Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields”, Soviet Math. Dokl., 39:1 (1989), 38–41 (with G. B. Shabat) | MR | Zbl

[2] “Drawing curves over number fields”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 199–227 (with G. B. Shabat) | DOI | MR | Zbl

[3] “Étale topologies of schemes over fields of finite type over $\mathbf Q$”, Math. USSR-Izv., 37:3 (1991), 511–523 | DOI | MR | Zbl

[4] “$\infty$-groupoids as a model for a homotopy category”, Russian Math. Surveys, 45:5 (1990), 239–240 (with M. M. Kapranov) | DOI | MR | Zbl

[5] “Free $n$-category generated by a cube, oriented matroids, and higher Bruhat orders”, Funct. Anal. Appl., 25:1 (1991), 50–52 (with M. M. Kapranov) | DOI | MR | Zbl

[6] “Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results)”, International category theory meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Géom. Différentielle Catég., 32:1 (1991), 11–27 (with M. M. Kapranov) | MR | Zbl

[7] “$\infty$-groupoids and homotopy types”, International category theory meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Géom. Différentielle Catég., 32:1 (1991), 29–46 (with M. M. Kapranov) | MR | Zbl

[8] “On Galois groups of function fields over fields of finite type over $\mathbb Q$”, Russian Math. Surveys, 46:5 (1991), 202–203 | DOI | MR | Zbl

[9] “Galois representations connected with hyperbolic curves”, Math. USSR-Izv., 39:3 (1992), 1281–1291 | DOI | MR | Zbl

[10] “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259 (with M. M. Kapranov) | DOI | MR | Zbl

[11] “Braided monoidal $2$-categories and Manin–Schechtman higher braid groups”, J. Pure Appl. Algebra, 92:3 (1994), 241–267 (with M. Kapranov) | DOI | MR | Zbl

[12] Homology of schemes and covariant motives, Ph.D. Thesis, Harvard Univ., Cambridge, MA, 1992, 64 pp. | MR

[13] “A nilpotence theorem for cycles algebraically equivalent to zero”, Int. Math. Res. Not., 1995, no. 4, 187–198 | DOI | MR | Zbl

[14] “Homology of schemes”, Selecta Math. (N. S.), 2:1 (1996), 111–153 | DOI | MR | Zbl

[15] “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 (with A. Suslin) | DOI | MR | Zbl

[16] “$\mathbf A^1$-homotopy theory”, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Doc. Math., 1998, Extra Vol. I, 579–604 | MR | Zbl

[17] “${\mathbf A}^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 1999, no. 90, 45–143 (with F. Morel) | DOI | MR | Zbl

[18] “Voevodsky's Seattle lectures: $K$-theory and motivic cohomology”, Notes by C. Weibel, Algebraic $K$-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999, 283–303 | DOI | MR | Zbl

[19] “Introduction”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 3–9 (with E. M. Friedlander, A. Suslin) | MR | Zbl

[20] “Relative cycles and Chow sheaves”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 10–86 (with A. Suslin) | MR | Zbl

[21] “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl

[22] “Bivariant cycle cohomology”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187 (with E. M. Friedlander) | MR | Zbl

[23] “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl

[24] Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000 (with E. M. Friedlander, A. Suslin), vi+254 pp. | MR | Zbl

[25] “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 (with A. Suslin) | DOI | MR | Zbl

[26] “Open problems in the motivic stable homotopy theory. I”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., 3, 1, Int. Press, Somerville, MA, 2002, 3–34 | MR | Zbl

[27] “A possible new approach to the motivic spectral sequence for algebraic $K$-theory”, Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002, 371–379 | DOI | MR | Zbl

[28] “Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic”, Int. Math. Res. Not., 2002, no. 7, 351–355 | DOI | MR | Zbl

[29] “Reduced power operations in motivic cohomology”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 98, 1–57 | DOI | MR | Zbl

[30] “Motivic cohomology with ${\mathbb Z}/2$-coefficients”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 98, 59–104 | DOI | MR | Zbl

[31] “On the zero slice of the sphere spectrum”, Algebraicheskaya geometriya: Metody, svyazi i prilozheniya, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Andreya Nikolaevicha Tyurina, Tr. MIAN, 246, Nauka, MAIK “Nauka/Interperiodika”, M., 2004, 106–115 | MR | Zbl

[32] Lecture notes on motivic cohomology, Clay Math. Monogr., 2, Amer. Math. Soc., Providence, RI; Clay Math. Inst., Cambridge, MA, 2006 (with C. Mazza, Ch. Weibel), xiv+216 pp. | MR | Zbl

[33] “An exact sequence for $K^M_\ast/2$ with applications to quadratic forms”, Ann. of Math. (2), 165:1 (2007), 1–13 (with D. Orlov, A. Vishik) | DOI | MR | Zbl

[34] “Voevodsky's Nordfjordeid lectures: motivic homotopy theory”, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, 147–221 (with O. Röndigs, P. A. Østvær) | DOI | MR

[35] Motivic homotopy theory, Lectures from the summer school (Nordfjordeid, 2002), Universitext, Springer-Verlag, Berlin, 2007 (with B. I. Dundas, M. Levine, P. A. Østvær, O. Röndigs), x+221 pp. | DOI | MR | Zbl

[36] “Cancellation theorem”, Doc. Math., 2010, Extra vol.: A. A. Suslin sixtieth birthday, 671–685 | MR | Zbl

[37] “Motives over simplicial schemes”, J. K-Theory, 5:1 (2010), 1–38 | DOI | MR | Zbl

[38] “Simplicial radditive functors”, J. K-Theory, 5:2 (2010), 201–244 | DOI | MR | Zbl

[39] “Motivic Eilenberg–MacLane spaces”, Publ. Math. Inst. Hautes Études Sci., 2010, no. 112, 1–99 | DOI | MR | Zbl

[40] “Homotopy theory of simplicial sheaves in completely decomposable topologies”, J. Pure Appl. Algebra, 214:8 (2010), 1384–1398 | DOI | MR | Zbl

[41] “Unstable motivic homotopy categories in Nisnevich and cdh-topologies”, J. Pure Appl. Algebra, 214:8 (2010), 1399–1406 | DOI | MR | Zbl

[42] “On motivic cohomology with $\mathbb Z/l$-coefficients”, Ann. of Math. (2), 174:1 (2011), 401–438 | DOI | MR | Zbl

[43] Abstracts from the mini-workshop (February 27 – March 05, 2011), Oberwolfach Rep., 8, no. 1, 2011 (ed. by V. Voevodsky with S. Awodey, R. Garner, P. Martin-Löf) | DOI | MR | Zbl

[44] “Univalent foundations of mathematics”, Logic, language, information and computation (Philadelphia, PA, 2011), Lecture Notes in Comput. Sci., 6642, Lecture Notes in Artificial Intelligence, Springer, Heidelberg, 2011, 4 | DOI | MR | Zbl

[45] “A univalent formalization of the $p$-adic numbers”, Math. Structures Comput. Sci., 25:5 (2015), 1147–1171 (with Á. Pelayo, M. A. Warren) | DOI | MR | Zbl

[46] “An experimental library of formalized mathematics based on the univalent foundations”, Math. Structures Comput. Sci., 25:5 (2015), 1278–1294 | DOI | MR | Zbl

[47] “A C-system defined by a universe category”, Theory Appl. Categ., 30 (2015), No 37, 1181–1215 | MR | Zbl

[48] “Subsystems and regular quotients of C-systems”, A panorama of mathematics: pure and applied, Contemp. Math., 658, Amer. Math. Soc., Providence, RI, 2016, 127–137 | DOI | MR | Zbl

[49] “Products of families of types and $(\Pi,\lambda)$-structures on C-systems”, Theory Appl. Categ., 31 (2016), No 36, 1044–1094 | MR | Zbl

[50] “C-systems defined by universe categories: presheaves”, Theory Appl. Categ., 32 (2017), No 3, 53–112 | MR | Zbl

[51] “The $(\Pi, \lambda)$-structures on the C-systems defined by universe categories”, Theory Appl. Categ., 32 (2017), No 4, 113–121 | MR | Zbl

[52] “Categorical structures for type theory in univalent foundations”, Computer science logic 2017, LIPIcs. Leibniz Int. Proc. Inform., 82, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, 8 (with B. Ahrens, P. L. Lumsdaine), 16 pp. | DOI | MR