Mots-clés : Hermite–Padé polynomials
@article{RM_2018_73_3_a1,
author = {E. A. Rakhmanov},
title = {Zero distribution for {Angelesco} {Hermite{\textendash}Pad\'e} polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {457--518},
year = {2018},
volume = {73},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/}
}
E. A. Rakhmanov. Zero distribution for Angelesco Hermite–Padé polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 457-518. http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/
[1] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl
[2] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl
[3] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl
[4] A. I. Aptekarev, V. A. Kalyagin, “Asimptoticheskoe povedenie kornya $n$-oi stepeni mnogochlenov sovmestnoi ortogonalnosti i algebraicheskie funktsii”, Preprinty IPM im. M. V. Keldysha, 1986, No 60, 18 pp. | MR
[5] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus $0$)”, Int. Math. Res. Pap. IMRP, 2008:4 (2008), rpm007, 128 pp. | DOI | MR | Zbl
[6] A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russian Math. Surveys, 72:3 (2017), 389–449 | DOI | DOI | MR | Zbl
[7] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl
[8] A. I. Aptekarev, F. Marcellán, I. A. Rocha, “Semiclassical multiple orthogonal polynomials and the properties of Jacobi–Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 117–146 | DOI | MR | Zbl
[9] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[10] G. A. Baker, Jr., P. Graves-Morris, Padé approximants, Encyclopedia Math. Appl., 59, 2nd ed., Addison-Wesley Publishing Co., Reading, MA, 1996, xiv+746 pp. | DOI | MR | MR | Zbl | Zbl
[11] L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl
[12] L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs”, Found. Comput. Math., 9:6 (2009), 675–715 | DOI | MR | Zbl
[13] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses ”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl
[14] T. Bergkvist, H. Rullgård, “On polynomial eigenfunctions for a class of differential operators”, Math. Res. Lett., 9:2-3 (2002), 153–171 ; Res. Rep. Math., No 13, Department of Mathematics, Stockholm Univ., Stockholm, 2001, 19 pp. https://www2.math.su.se/reports/2001/13/ | DOI | MR | Zbl
[15] J.-E. Björk, J. Borcea, R. Bøgvad, “Subharmonic configurations and algebraic Cauchy transforms of probability measures”, Notions of positivity and the geometry of polynomials, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2001, 39–62 | DOI | MR | Zbl
[16] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl
[17] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl
[18] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | DOI | MR | Zbl
[19] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | DOI | MR | Zbl
[20] V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI | MR | Zbl
[21] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263 | DOI | DOI | MR | Zbl
[22] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | DOI | MR | MR | Zbl | Zbl
[23] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR | Zbl
[24] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl
[25] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[26] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[27] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl
[28] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl
[29] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the convergence of Padé approximation of orthogonal expansions”, Proc. Steklov Inst. Math., 200 (1993), 149–159 | MR | Zbl
[30] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | DOI | MR | Zbl
[31] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164:6 (2012), 854–868 | DOI | MR | Zbl
[32] V. A. Kaljagin, “On a class of polynomials defined by two orthogonality relations”, Math. USSR-Sb., 38:4 (1981), 563–580 | DOI | MR | Zbl
[33] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russian Math. Surveys, 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl
[34] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139 (1982), 1–231 | MR | Zbl
[35] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl
[36] M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224 | DOI | DOI | MR | Zbl
[37] G. López, E. A. Rakhmanov, “Rational approximations, orthogonal polynomials and equilibrium distributions”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 125–157 | DOI | MR | Zbl
[38] G. López Lagomasino, S. Medina Peralta, “On the convergence of type I Hermite–Padé approximants”, Adv. Math., 273 (2015), 124–148 | DOI | MR | Zbl
[39] A. Martínez-Finkelshtein, R. Orive, E. A. Rakhmanov, “Phase transitions and equilibrium measures in random matrix models”, Comm. Math. Phys., 333:3 (2015), 1109–1173 | DOI | MR | Zbl
[40] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | DOI | MR | Zbl
[41] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl
[42] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl
[43] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl
[44] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 | DOI | MR | Zbl
[45] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[46] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl
[47] J. Nuttall, “The convergence of {P}adé approximants to functions with branch points”, Padé and rational approximation (Univ. South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 101–109 | MR | Zbl
[48] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl
[49] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[50] J. Nuttall, “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl
[51] J. Nuttall, S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl
[52] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, preprint, M., 1994
[53] E. A. Rakhmanov, “Strong asymptotics for orthogonal polynomials”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer, Berlin, 1993, 71–97 | DOI | MR | Zbl
[54] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | DOI | MR | Zbl
[55] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[56] E. A. Rakhmanov, “The Gonchar–Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 | DOI | DOI | MR | Zbl
[57] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl
[58] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[59] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl
[60] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | DOI | MR | Zbl
[61] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[62] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl
[63] H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl
[64] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results – a summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl
[65] H. R. Stahl, Sets of minimal capacity and extremal domains, 2012, 112 pp., arXiv: 1205.3811
[66] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl
[67] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl
[68] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl
[69] S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978 | DOI | DOI | MR | Zbl
[70] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377 | DOI | DOI | MR | Zbl
[71] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., XXIII, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl
[72] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3:2 (1969), 127–232 | DOI | MR | Zbl