Zero distribution for Angelesco Hermite–Padé polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 457-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the zero distribution of Hermite–Padé polynomials of the first kind associated with a vector function $$ \vec f=(f_1,\dots,f_s) $$ whose components $f_k$ are functions with a finite number of branch points in the plane. The branch sets of component functions are assumed to be sufficiently well separated (which constitutes the Angelesco case). Under this condition, a theorem on the limit zero distribution for such polynomials is proved. The limit measures are defined in terms of a known vector equilibrium problem. The proof of the theorem is based on methods developed by Stahl [59]–[63] and Gonchar and the author [27], [55]. These methods are generalized further in the paper in application to collections of polynomials defined by systems of complex orthogonality relations. Together with the characterization of the limit zero distributions of Hermite–Padé polynomials in terms of a vector equilibrium problem, the paper considers an alternative characterization using a Riemann surface $\mathcal R(\vec f\,)$ associated with $\vec f$. In these terms, a more general conjecture (without the Angelesco condition) on the zero distribution of Hermite–Padé polynomials is presented. Bibliography: 72 titles.
Keywords: rational approximations, zero distribution, equilibrium problem, $S$-compact set.
Mots-clés : Hermite–Padé polynomials
@article{RM_2018_73_3_a1,
     author = {E. A. Rakhmanov},
     title = {Zero distribution for {Angelesco} {Hermite{\textendash}Pad\'e} polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {457--518},
     year = {2018},
     volume = {73},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - Zero distribution for Angelesco Hermite–Padé polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 457
EP  - 518
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/
LA  - en
ID  - RM_2018_73_3_a1
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T Zero distribution for Angelesco Hermite–Padé polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 457-518
%V 73
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/
%G en
%F RM_2018_73_3_a1
E. A. Rakhmanov. Zero distribution for Angelesco Hermite–Padé polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 3, pp. 457-518. http://geodesic.mathdoc.fr/item/RM_2018_73_3_a1/

[1] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl

[2] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[3] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[4] A. I. Aptekarev, V. A. Kalyagin, “Asimptoticheskoe povedenie kornya $n$-oi stepeni mnogochlenov sovmestnoi ortogonalnosti i algebraicheskie funktsii”, Preprinty IPM im. M. V. Keldysha, 1986, No 60, 18 pp. | MR

[5] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus $0$)”, Int. Math. Res. Pap. IMRP, 2008:4 (2008), rpm007, 128 pp. | DOI | MR | Zbl

[6] A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russian Math. Surveys, 72:3 (2017), 389–449 | DOI | DOI | MR | Zbl

[7] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[8] A. I. Aptekarev, F. Marcellán, I. A. Rocha, “Semiclassical multiple orthogonal polynomials and the properties of Jacobi–Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 117–146 | DOI | MR | Zbl

[9] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl

[10] G. A. Baker, Jr., P. Graves-Morris, Padé approximants, Encyclopedia Math. Appl., 59, 2nd ed., Addison-Wesley Publishing Co., Reading, MA, 1996, xiv+746 pp. | DOI | MR | MR | Zbl | Zbl

[11] L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl

[12] L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs”, Found. Comput. Math., 9:6 (2009), 675–715 | DOI | MR | Zbl

[13] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses ”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[14] T. Bergkvist, H. Rullgård, “On polynomial eigenfunctions for a class of differential operators”, Math. Res. Lett., 9:2-3 (2002), 153–171 ; Res. Rep. Math., No 13, Department of Mathematics, Stockholm Univ., Stockholm, 2001, 19 pp. https://www2.math.su.se/reports/2001/13/ | DOI | MR | Zbl

[15] J.-E. Björk, J. Borcea, R. Bøgvad, “Subharmonic configurations and algebraic Cauchy transforms of probability measures”, Notions of positivity and the geometry of polynomials, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2001, 39–62 | DOI | MR | Zbl

[16] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl

[17] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl

[18] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | DOI | MR | Zbl

[19] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | DOI | MR | Zbl

[20] V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI | MR | Zbl

[21] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263 | DOI | DOI | MR | Zbl

[22] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | DOI | MR | MR | Zbl | Zbl

[23] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR | Zbl

[24] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl

[25] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[26] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[27] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl

[28] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[29] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the convergence of Padé approximation of orthogonal expansions”, Proc. Steklov Inst. Math., 200 (1993), 149–159 | MR | Zbl

[30] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | DOI | MR | Zbl

[31] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164:6 (2012), 854–868 | DOI | MR | Zbl

[32] V. A. Kaljagin, “On a class of polynomials defined by two orthogonality relations”, Math. USSR-Sb., 38:4 (1981), 563–580 | DOI | MR | Zbl

[33] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russian Math. Surveys, 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl

[34] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139 (1982), 1–231 | MR | Zbl

[35] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl

[36] M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224 | DOI | DOI | MR | Zbl

[37] G. López, E. A. Rakhmanov, “Rational approximations, orthogonal polynomials and equilibrium distributions”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 125–157 | DOI | MR | Zbl

[38] G. López Lagomasino, S. Medina Peralta, “On the convergence of type I Hermite–Padé approximants”, Adv. Math., 273 (2015), 124–148 | DOI | MR | Zbl

[39] A. Martínez-Finkelshtein, R. Orive, E. A. Rakhmanov, “Phase transitions and equilibrium measures in random matrix models”, Comm. Math. Phys., 333:3 (2015), 1109–1173 | DOI | MR | Zbl

[40] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | DOI | MR | Zbl

[41] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[42] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl

[43] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl

[44] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 | DOI | MR | Zbl

[45] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[46] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl

[47] J. Nuttall, “The convergence of {P}adé approximants to functions with branch points”, Padé and rational approximation (Univ. South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 101–109 | MR | Zbl

[48] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl

[49] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[50] J. Nuttall, “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl

[51] J. Nuttall, S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl

[52] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, preprint, M., 1994

[53] E. A. Rakhmanov, “Strong asymptotics for orthogonal polynomials”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer, Berlin, 1993, 71–97 | DOI | MR | Zbl

[54] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | DOI | MR | Zbl

[55] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[56] E. A. Rakhmanov, “The Gonchar–Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 | DOI | DOI | MR | Zbl

[57] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl

[58] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[59] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl

[60] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | DOI | MR | Zbl

[61] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[62] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl

[63] H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl

[64] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results – a summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[65] H. R. Stahl, Sets of minimal capacity and extremal domains, 2012, 112 pp., arXiv: 1205.3811

[66] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl

[67] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl

[68] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl

[69] S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978 | DOI | DOI | MR | Zbl

[70] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377 | DOI | DOI | MR | Zbl

[71] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., XXIII, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl

[72] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3:2 (1969), 127–232 | DOI | MR | Zbl