On a property of regularly accretive differential-difference operators with degeneracy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 372-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider elliptic differential-difference operators with degeneration in a bounded domain with piecewise smooth boundary. It is proved that these operators are regular accretive and satisfy the Kato square root conjecture.
@article{RM_2018_73_2_a7,
     author = {A. L. Skubachevskii},
     title = {On a~property of regularly accretive differential-difference operators with degeneracy},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {372--374},
     year = {2018},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a7/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
TI  - On a property of regularly accretive differential-difference operators with degeneracy
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 372
EP  - 374
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_2_a7/
LA  - en
ID  - RM_2018_73_2_a7
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%T On a property of regularly accretive differential-difference operators with degeneracy
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 372-374
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2018_73_2_a7/
%G en
%F RM_2018_73_2_a7
A. L. Skubachevskii. On a property of regularly accretive differential-difference operators with degeneracy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 372-374. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a7/

[1] M. S. Agranovich, A. M. Selitskii, Funkts. analiz i ego pril., 47:2 (2013), 2–17 | DOI | DOI | MR | Zbl

[2] P. Auscher, S. Hofmann, A. McIntosch, P. Tchamitchian, J. Evol. Equ., 1:4 (2001), 361–385 | DOI | MR | Zbl

[3] T. Kato, J. Math. Soc. Japan, 13:3 (1961), 246–274 | DOI | MR | Zbl

[4] J. L. Lions, J. Math. Soc. Japan, 14:2 (1962), 233–241 | DOI | MR | Zbl

[5] A. McIntosh, Proc. Amer. Math. Soc., 32:2 (1972), 430–434 | DOI | MR | Zbl

[6] A. L. Skubachevskii, Tr. MMO, 59 (1998), 240–283 | MR | Zbl

[7] A. L. Skubachevskii, UMN, 71:5(431) (2016), 3–112 | DOI | DOI | MR | Zbl

[8] A. L. Skubachevskii, R. V. Shamin, Dokl. RAN, 379:5 (2001), 595–598 | MR | Zbl