Mots-clés : configuration space
@article{RM_2018_73_2_a2,
author = {A. B. Skopenkov},
title = {A user's guide to the topological {Tverberg} conjecture},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {323--353},
year = {2018},
volume = {73},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a2/}
}
A. B. Skopenkov. A user's guide to the topological Tverberg conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 323-353. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a2/
[1] A. Ambrosetti, F. Gori, R. Lucchetti (eds.), Mathematical economics, Lectures given at the 2nd C.I.M.E. session (Montecatini Terme, 1986), Lecture Notes in Math., 1330, Springer-Verlag, Berlin, 1988, viii+137 pp. | DOI | MR | Zbl
[2] S. Avvakumov, I. Mabillard, A. Skopenkov, U. Wagner, Eliminating higher-multiplicity intersections. III. Codimension 2, 2017 (v1 – 2015), 23 pp., arXiv: 1511.03501
[3] E. G. Bajmóczy, I. Bárány, “On a common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sci. Hungar., 34:3-4 (1979), 347–350 | DOI | MR | Zbl
[4] I. Bárány, P. V. M. Blagojević, G. M. Ziegler, “Tverberg's theorem at 50: extensions and counterexamples”, Notices Amer. Math. Soc., 63:7 (2016), 732–739 | DOI | MR | Zbl
[5] I. Bárány, S. B. Shlosman, A. Szűcs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. (2), 23:1 (1981), 158–164 | DOI | MR | Zbl
[6] P. V. M. Blagojević, F. Frick, G. M. Ziegler, “Tverberg plus constraints”, Bull. Lond. Math. Soc., 46:5 (2014), 953–967 | DOI | MR | Zbl
[7] P. V. M. Blagojević, F. Frick, G. M. Ziegler, Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints, 2015, 6 pp., arXiv: 1510.07984
[8] P. V. M. Blagojević, W. Lück, G. M. Ziegler, “Equivariant topology of configuration spaces”, J. Topol., 8:2 (2015), 414–456 ; (2014 (v1 – 2012)), 40 pp., arXiv: 1207.2852 | DOI | MR | Zbl
[9] P. V. M. Blagojevič, B. Matschke, G. M. Ziegler, “Optimal bounds for the colored Tverberg problem”, J. Eur. Math. Soc. (JEMS), 17:4 (2015), 739–754 ; (2014 (v1 – 2009)), 17 pp., arXiv: 0910.4987 | DOI | MR | Zbl
[10] P. V. M. Blagojević, G. M. Ziegler, “Beyond the Borsuk–Ulam theorem: the topological Tverberg story”, A journey through discrete mathematics, Springer, Cham, 2017, 273–341 ; 2017 (v1 – 2016), 36 pp., arXiv: 1605.07321v2 | DOI | MR | Zbl
[11] I. Bogdanov, A. Matushkin, Algebraic proofs of linear versions of the Conway–Gordon–Sachs theorem and the van Kampen–Flores theorem, in Russian, 2015, 5 pp., arXiv: 1508.03185
[12] B. G. Boltyanskii, V. A. Efremovich, Naglyadnaya topologiya, Nauka, M., 1982, 149 pp. ; V. G. Boltyanskii, V. A. Efremovich, Intuitive combinatorial topology, Universitext, Springer-Verlag, New York, 2001, xii+141 pp. | MR | Zbl | DOI | MR | Zbl
[13] K. S. Braun, Kogomologii grupp, Nauka, M., 1987, 384 pp. ; K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Berlin, 1982, x+306 pp. | MR | Zbl | DOI | MR | Zbl
[14] M. Čadek, M. Krčál, L. Vokřínek, Algorithmic solvability of the lifting-extension problem, 2016 (v1 – 2013), 54 pp., arXiv: 1307.6444
[15] D. Repovsh, M. B. Skopenkov, M. Tsentsel, “Klassifikatsiya vlozhenii torov v 2-metastabilnoi razmernosti”, Matem. sb., 203:11 (2012), 129–158 ; M. Cencelj, D. Repovš, M. B. Skopenkov, “Classification of knotted tori in 2-metastable dimension”, Sb. Math., 203:11 (2012), 1654–1681 ; (2012 (v1 – 2008)), 24 pp., arXiv: 0811.2745 | DOI | MR | Zbl | DOI
[16] J. H. Conway, C. McA. Gordon, “Knots and links in spatial graphs”, J. Graph Theory, 7:4 (1983), 445–453 | DOI | MR | Zbl
[17] T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter Co., Berlin, 1987, x+312 pp. | DOI | MR | Zbl
[18] A. Enne, T. Zaitsev, A. Ryabichev, A. Skopenkov, “Zadacha 6. Invarianty izobrazhenii grafov na ploskosti”, 29-ya letnyaya konferentsiya mezhdunarodnogo matematicheskogo Turnira gorodov (Dakhovskaya, Respublika Adygeya, Rossiya, 2017), 2017, 31 pp.; A. Enne, A. Ryabichev, A. Skopenkov, T. Zaitsev, “Problem 6: Invariants of graph drawings in the plane”, The 29th Summer conference of the International mathematical tournament of towns (Dakhovskaya, Adyghe, Russia, 2017), 28 pp. http://www.turgor.ru/lktg/2017/6/index.htm
[19] R. Fokkink, “A forgotten mathematician”, Eur. Math. Soc. Newsl., 2004, no. 52, 9–14 http://www.ems-ph.org/journals/newsletter/pdf/2004-06-52.pdf
[20] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. ; A. T. Fomenko, D. B. Fuchs, V. L. Gutenmacher, Homotopic topology, Akadémiai Kiadó, Budapest, 1986, 310 pp. | MR | Zbl | MR
[21] M. H. Freedman, “Quadruple points of 3-manifolds in $S^4$”, Comment. Math. Helv., 53 (1978), 385–394 | DOI | MR | Zbl
[22] M. H. Freedman, V. S. Krushkal, P. Teichner, “Van Kampen's embedding obstruction is incomplete for 2-complexes in $\mathbb{R}^4$”, Math. Res. Lett., 1:2 (1994), 167–176 | DOI | MR | Zbl
[23] F. Frick, Counterexamples to the topological Tverberg conjecture, 2015, 3 pp., arXiv: 1502.00947
[24] F. Frick, On affine Tverberg-type results without continuous generalization, 2017, 13 pp., arXiv: 1702.05466
[25] M. Gromov, Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990, 536 pp. ; M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1986, x+363 pp. | MR | DOI | Zbl
[26] M. Gromov, “Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry”, Geom. Funct. Anal., 20:2 (2010), 416–526 | DOI | MR | Zbl
[27] P. M. Gruber, R. Schneider, “Problems in geometric convexity”, Contributions to geometry, Proceedings if the geometry symposium (Siegen, 1978), Birkhäuser, Basel–Boston, MA, 1979, 255–278 | MR | Zbl
[28] N. Habegger, U. Kaiser, “Link homotopy in 2-metastable range”, Topology, 37:1 (1998), 75–94 | DOI | MR | Zbl
[29] A. Haefliger, “Knotted $(4k-1)$-spheres in $6k$-space”, Ann. of Math. (2), 75:3 (1962), 452–466 | DOI | MR | Zbl
[30] A. Haefliger, “Plongements différentiables dans le domain stable”, Comment. Math. Helv., 37 (1962/1963), 155–176 | DOI | MR | Zbl
[31] H. van der Holst, “Graphs and obstructions in four dimensions”, J. Combin. Theory Ser. B, 96:3 (2006), 388–404 | DOI | MR | Zbl
[32] Sy-tszyan Khu, Teoriya gomotopii, Mir, M., 1964, 468 pp. ; S.-T. Hu, Homotopy theory, Pure Appl. Math., 8, Academic Press, New York–London, 1959, xiii+347 pp. | Zbl | MR | Zbl
[33] D. Jojić, S. T. Vrećica, R. T. Živaljević, Topology and combinatorics of “unavoidable complexes”, 2016, 20 pp., arXiv: 1603.08472
[34] G. Kalai, From Oberwolfach: The topological Tverberg conjecture is false, “Combinatorics and more” blog post, February 6, 2015, https://gilkalai.wordpress.com/2015/02/06/from-oberwolfach-the-topological
[35] E. Kolpakov, “Dokazatelstvo teoremy Radona pri pomoschi ponizheniya razmernosti”, Matem. pros., ser. 3 (to appear)
[36] M. de Longueville, “Erratum to: ‘Notes on the topological Tverberg theorem’ [Discrete Math. 241, 207–233 (2001)]”, Discrete Math., 247:1-3 (2002), 271–297 | DOI | MR | Zbl
[37] L. Lovász, A. Schrijver, “A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs”, Proc. Amer. Math. Soc., 126:5 (1998), 1275–1285 | DOI | MR | Zbl
[38] I. Mabillard, U. Wagner, “Eliminating Tverberg points, I. An analogue of the Whitney trick”, Computational geometry (SoCG{ '}14), ACM, New York, 2014, 171–180 | DOI | MR
[39] I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems, 2015, 46 pp., arXiv: 1508.02349
[40] I. Mabillard, U. Wagner, “Eliminating higher-multiplicity intersections, II. The deleted product criterion in the $r$-metastable range”, 32nd International symposium on computational geometry (SoCG{ '}16), LIPIcs. Leibniz Int. Proc. Inform., 51, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, 51, 12 pp. | DOI | MR | Zbl
[41] I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, II. The deleted product criterion in the $r$-metastable range, 2016, 35 pp., arXiv: 1601.00876
[42] J. Matoušek, Using the {B}orsuk–{U}lam theorem. Lectures on topological methods in combinatorics and geometry, Universitext, Springer-Verlag, Berlin, 2003, xii+196 pp. | DOI | MR | Zbl
[43] J. Matoušek, M. Tancer, U. Wagner, “A geometric proof of the colored Tverberg theorem”, Discrete Comput. Geom., 47:2 (2012), 245–265 ; (2011 (v1 – 2010)), 19 pp., arXiv: 1008.5275 | DOI | MR | Zbl
[44] S. A. Melikhov, “The van Kampen obstruction and its relatives”, Geometriya, topologiya i matematicheskaya fizika. II, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Tr. MIAN, 266, MAIK “Nauka/Interperiodika”, M., 2009, 149–183 ; Proc. Steklov Inst. Math., 266 (2009), 142–176 ; (2009 (v1 – 2006)), 41 pp., arXiv: math/0612082 | MR | Zbl | DOI
[45] S. A. Melikhov, Combinatorics of embeddings, 2011, 49 pp., arXiv: 1103.5457
[46] S. A. Melikhov, Gauss-type formulas for link map invariants, 2017, 21 pp., arXiv: 1711.03530
[47] S. Negami, “Ramsey theorems for knots, links and spatial graphs”, Trans. Amer. Math. Soc., 324:2 (1991), 527–541 | DOI | MR | Zbl
[48] M. Özaydin, Equivariant maps for the symmetric group, preprint, Univ. Wisconsin–Madison, 1987, 17 pp. http://minds.wisconsin.edu/handle/1793/63829
[49] I. Pak, S. Wilson, Geometric realizations of polyhedral complexes, 27 pp. http://www.math.ucla.edu/~pak/papers/Fary-full31.pdf
[50] B. B. Peterson, “The geometry of Radon's theorem”, Amer. Math. Monthly, 79:9 (1972), 949–963 | DOI | MR | Zbl
[51] V. V. Prasolov, Elementy kombinatornoi i differentsialnoi topologii, Izd-vo MTsNMO, M., 2004, 352 pp.; V. V. Prasolov, Elements of combinatorial and differential topology, Grad. Stud. Math., 74, Amer. Math. Soc., Providence, RI, 2006, xii+331 pp. | DOI | MR | Zbl
[52] V. V. Prasolov, M. B. Skopenkov, “Ramseevskaya teoriya uzlov i zatseplenii”, Matem. prosv., ser. 3, 9, Izd-vo MTsNMO, M., 2005, 108–115
[53] N. Robertson, P. D. Seymour, R. Thomas, “A survey of linkless embeddings”, Graph structure theory (Seattle, WA, 1991), Contemp. Math., 147, Amer. Math. Soc., Providence, RI, 1993, 125–136 | DOI | MR | Zbl
[54] K. Rurk, B. Sanderson, Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974, 208 pp. ; C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology, Ergeb. Math. Grenzgeb., 69, Springer-Verlag, New York–Heidelberg, 1972, viii+123 pp. | MR | MR | Zbl
[55] A. Skopenkov, Invariants of graph drawings in the plane, preprint, 2018
[56] H. Sachs, “On spatial representations of finite graphs”, Finite and infinite sets (Eger, 1981), Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam, 1984, 649–662 | MR | Zbl
[57] K. S. Sarkaria, “Tverberg's theorem via number fields”, Israel J. Math., 79:2-3 (1992), 317–320 | DOI | MR | Zbl
[58] K. S. Sarkaria, “Tverberg partitions and Borsuk–Ulam theorems”, Pacific J. Math., 196:1 (2000), 231–241 | DOI | MR | Zbl
[59] F. W. Simmons, F. E. Su, “Consensus-halving via theorems of Borsuk–Ulam and Tucker”, Math. Social Sci., 45:1 (2003), 15–25 | DOI | MR | Zbl
[60] S. Simon, “Average-value Tverberg partitions via finite Fourier analysis”, Israel J. Math., 216:2 (2016), 891–904 ; (2016 (v1 – 2015)), 9 pp., arXiv: 1501.04612 | DOI | MR | Zbl
[61] R. S. Simon, S. Spie.{z}, H. Toruńczyk, “The existence of equilibria in certain games, separation for families of convex functions and a theorem of Borsuk–Ulam type”, Israel J. Math, 92:1-3 (1995), 1–21 | DOI | MR | Zbl
[62] R. S. Simon, S. Spie.{z}, H. Toruńczyk, “Equilibrium existence and topology in some repeated games with incomplete information”, Trans. Amer. Math. Soc., 354:12 (2002), 5005–5026 | DOI | MR | Zbl
[63] M. Skopenkov, “Embedding products of graphs into Euclidean spaces”, Fund. Math., 179:3 (2003), 191–198 | DOI | MR | Zbl
[64] A. B. Skopenkov, “Embedding and knotting of manifolds in Euclidean spaces”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 248–342 ; 2006, 70 pp., arXiv: math/0604045 | DOI | MR | Zbl
[65] A. Skopenkov, Realizability of hypergraphs and Ramsey link theory, 2015 (v1 – 2014), 28 pp., arXiv: 1402.0658
[66] A. Skopenkov, Algebraicheskaya topologiya s geometricheskoi tochki zreniya, MTsNMO, M., 2015, 272 pp. http://www.mccme.ru/circles/oim/obstruct.pdf
[67] A. Skopenkov, A user's guide to the topological Tverberg conjecture, 2017 (v1 – 2016), 20 pp., arXiv: 1605.05141
[68] A. Skopenkov, On the metastable Mabillard–Wagner conjecture, 2017, 5 pp., arXiv: 1702.04259
[69] A. Skopenkov, Eliminating higher-multiplicity intersections in the metastable dimension range, 2017, 11 pp., arXiv: 1704.00143
[70] A. Skopenkov, Algebraicheskaya topologiya s algoritmicheskoi tochki zreniya, 96 pp. http://www.mccme.ru/circles/oim/algor.pdf
[71] A. Skopenkov, M. Tancer, Hardness of almost embedding simplicial complexes in $\mathbb{R}^d$, 2017, 14 pp., arXiv: 1703.06305
[72] K. Taniyama, “Higher dimensional links in a simplicial complex embedded in a sphere”, Pacific J. Math., 194:2 (2000), 465–467 | DOI | MR | Zbl
[73] A. Yu. Volovikov, “K topologicheskomu obobscheniyu teoremy Tverberga”, Matem. zametki, 59:3 (1996), 454–456 | DOI | MR | Zbl
[74] A. Yu. Volovikov, “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | DOI | MR | Zbl
[75] C. Weber, “Plongements de polyèdres dans le domaine métastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl
[76] Z. Yang, Computing equilibria and fixed points. The solution of nonlinear inequalities, Theory Decis. Lib. Ser. C Game Theory Math. Program. Oper. Res., 21, Kluwer Acad. Publ., Boston, MA, 1999, x+341 pp. | DOI | MR | Zbl
[77] G. M. Ziegler, “3N colored points in a plane”, Notices Amer. Math. Soc., 58:4 (2011), 550–557 http://www.ams.org/notices/201104/rtx110400550p.pdf | MR | Zbl
[78] A. Zimin, Alternative proofs of the Conway–Gordon–Sachs theorems, 2014 (v1 – 2013), 8 pp., arXiv: 1311.2882
[79] R. T. Živaljević, “User's guide to equivariant methods in combinatorics. II”, Publ. Inst. Math. (Beograd) (N. S.), 64(78) (1998), 107–132 | MR | Zbl