Varieties over finite fields: quantitative theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 261-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebraic varieties over finite fields are considered from the point of view of their invariants such as the number of points of a variety that are defined over the ground field and its extensions. The case of curves has been actively studied over the last thirty-five years, and hundreds of papers have been devoted to the subject. In dimension two or higher, the situation becomes much more difficult and has been little explored. This survey presents the main approaches to the problem and describes a major part of the known results in this direction. Bibliography: 102 titles.
Keywords: algebraic varieties over finite fields, zeta functions, points on surfaces, error-correcting codes, arithmetic statistics
Mots-clés : explicit formulae in arithmetic.
@article{RM_2018_73_2_a1,
     author = {S. G. Vl\u{a}du\c{t} and D. Yu. Nogin and M. A. Tsfasman},
     title = {Varieties over finite fields: quantitative theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {261--322},
     year = {2018},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/}
}
TY  - JOUR
AU  - S. G. Vlăduţ
AU  - D. Yu. Nogin
AU  - M. A. Tsfasman
TI  - Varieties over finite fields: quantitative theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 261
EP  - 322
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/
LA  - en
ID  - RM_2018_73_2_a1
ER  - 
%0 Journal Article
%A S. G. Vlăduţ
%A D. Yu. Nogin
%A M. A. Tsfasman
%T Varieties over finite fields: quantitative theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 261-322
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/
%G en
%F RM_2018_73_2_a1
S. G. Vlăduţ; D. Yu. Nogin; M. A. Tsfasman. Varieties over finite fields: quantitative theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 261-322. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/

[1] S. G. Vleduts, D. Yu. Nogin, M. A. Tsfasman, Algebrogeometricheskie kody. Osnovnye ponyatiya, MTsNMO, M., 2003, 504 pp.; M. Tsfasman, S. Vlăduţ, D. Nogin, Algebraic geometric codes: basic notions, Math. Surveys Monogr., 139, Amer. Math. Soc., Providence, RI, 2007, xx+338 pp. | DOI | MR | Zbl

[2] H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisorenklassen endlicher Ordnung”, J. Reine Angew. Math., 1936:175 (1936), 55–62 ; “II. Automorphismen und Meromorphismen. Das Additionstheorem”, 69–88 ; “III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung”, 193–208 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] A. Weil, “Numbers of solutions of equations in finite fields”, Bull. Amer. Math. Soc., 55:5 (1949), 497–508 | DOI | MR | Zbl

[4] Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, xix+525 pp. ; v. 2, Lecture Notes in Math., 270, 1972, iv+418 pp. ; v. 3, Lecture Notes in Math., 305, 1973, vi+640 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR | Zbl

[6] B. Dwork, “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math., 82:3 (1960), 631–648 | DOI | MR | Zbl

[7] Y. Ihara, “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 721–724 | MR | Zbl

[8] S. G. Vleduts, V. G. Drinfeld, “O chisle tochek algebraicheskoi krivoi”, Funkts. analiz i ego pril., 17:1 (1983), 68–69 | MR | Zbl

[9] J.-P. Serre, Rational points on curves over finite fields: lectures given at Harvard University, Notes by F. Q. Gouvéa, Harvard Univ., Boston, 1985, 242 pp.

[10] M. A. Tsfasman, “Nombre de points des surfaces sur un corps fini”, Arithmetic, geometry and coding theory (Luminy, 1993), de Gruyter, Berlin, 1996, 209–224 | MR | Zbl

[11] M. A. Tsfasman, “Serre's theorem and measures corresponding to abelian varieties over finite fields”, Contemp. Math., Amer. Math. Soc., Providence, RI (to appear)

[12] M. A. Tsfasman, “Some remarks on the asymptotic number of points”, Coding theory and algebraic geometry, Lecture Notes in Math., 1518, Springer, Berlin, 1992, 178–192 | DOI | MR | Zbl

[13] M. A. Tsfasman, S. G. Vlăduţ, “Asymptotic properties of zeta-functions”, J. Math. Sci. (N. Y.), 84:5 (1997), 1445–1467 | DOI | MR | Zbl

[14] M. A. Tsfasman, S. G. Vlǎduţ, “Infinite global fields and the generalized Brauer–Siegel theorem”, Mosc. Math. J., 2:2 (2002), 329–402 | MR | Zbl

[15] C. Maire, “Finitude de tours et $p$-tours $T$-ramifiées modérées, $S$-décomposées”, J. Théor. Nombres Bordeaux, 8:1 (1996), 47–73 | DOI | MR | Zbl

[16] F. Hajir, C. Maire, “Tamely ramified towers and discriminant bounds for number fields”, Compositio Math., 128:1 (2001), 35–53 | DOI | MR | Zbl

[17] A. García, H. Stichtenoth, “A tower of Artin–Schreier extensions of function fields attaining the Drinfel'd–Vl{a}du{t} bound”, Invent. Math., 121:1 (1995), 211–222 | DOI | MR | Zbl

[18] A. Garcia, H. Stichtenoth, “Asymptotically good towers of function fields over finite fields”, C. R. Acad. Sci. Paris Sér. I Math., 322:11 (1996), 1067–1070 | MR | Zbl

[19] A. Garcia, H. Stichtenoth, “On the asymptotic behaviour of some towers of function fields over finite fields”, J. Number Theory, 61:2 (1996), 248–273 | DOI | MR | Zbl

[20] N. D. Elkies, “Explicit modular towers”, Proceedings of the 35th annual Allerton conference on communication, control and computing (1997), Univ. of Illinois, Urbana–Champaign, 1998, 23–32

[21] N. D. Elkies, “Explicit towers of Drinfeld modular curves”, European congress of mathematics (Barcelona, 2000), v. II, Progr. Math., 202, Birkhäuser, Basel, 2001, 189–198 | MR | Zbl

[22] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, “Towers of function fields over non-prime finite fields”, Mosc. Math. J., 15:1 (2015), 1–29 | MR | Zbl

[23] M. A. Tsfasman, S. G. Vlăduţ, Algebraic-geometric codes, Math. Appl. (Soviet Ser.), 58, Kluwer Acad. Publ., Dordrecht, 1991, xxiv+667 pp. | DOI | MR | Zbl

[24] M. Tsfasman, S. Vlăduţ, D. Nogin, Algebraic geometry codes: advanced chapters, Amer. Math. Soc., Providence, RI (to appear)

[25] G. Lachaud, M. A. Tsfasman, “Formules explicites pour le nombre de points des variétés sur un corps fini”, J. Reine Angew. Math., 493 (1997), 1–60 | MR | Zbl

[26] Y. Ihara, “On modular curves over finite fields”, Discrete subgroups of Lie groups and applications to moduli (Bombay, 1973), Oxford Univ. Press, Bombay, 1975, 161–202 | MR | Zbl

[27] M. A. Tsfasman, S. G. Vlǎduţ, Th. Zink, “Modular curves, Shimura curves, and Goppa codes, better than Varshamov–Gilbert bound”, Math. Nachr., 109 (1982), 21–28 | DOI | MR | Zbl

[28] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, “Galois towers over non-prime finite fields”, Acta Arith., 164:2 (2014), 163–179 | DOI | MR | Zbl

[29] Dzh. Miln, Etalnye kogomologii, Mir, M., 1983, 392 pp. ; J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | Zbl | MR | Zbl

[30] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1991, xiv+407 pp. | DOI | MR | Zbl

[31] B. Srinivasan, Representations of finite Chevalley groups: a survey, Lecture Notes in Math., 764, Springer-Verlag, Berlin–New York, 1979, x+177 pp. | DOI | MR | Zbl

[32] J. Wolfmann, “The number of solutions of certain diagonal equations over finite fields”, J. Number Theory, 42:3 (1992), 247–257 | DOI | MR | Zbl

[33] F. Rodier, “Nombre de points de surfaces de Deligne–Lusztig”, C. R. Acad. Sci. Paris Sér. I Math., 322:6 (1996), 563–566 | MR | Zbl

[34] Yu. I. Manin, M. A. Tsfasman, “Ratsionalnye mnogoobraziya: algebra, geometriya, arifmetika”, UMN, 41:2(248) (1986), 43–94 | MR | Zbl

[35] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972, 304 pp. ; Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | Zbl | MR | Zbl

[36] H. P. F. Swinnerton-Dyer, “The zeta function of a cubic surface over a finite field”, Proc. Cambridge Philos. Soc., 63 (1967), 55–71 | DOI | MR | Zbl

[37] T. Urabe, “Calculation of Manin's invariant for Del Pezzo surfaces”, Math. Comp., 65:213 (1996), 247–258 | DOI | MR | Zbl

[38] N. I. Shepherd-Barron, “Geography for surfaces of general type in positive characteristic”, Invent. Math., 106:2 (1991), 263–274 | DOI | MR | Zbl

[39] W. E. Lang, “On the Euler number of algebraic surfaces in characteristic $p$”, Amer. J. Math., 102:3 (1980), 511–516 | DOI | MR | Zbl

[40] S. Yu. Rybakov, “Dzeta-funktsii rassloenii na koniki i poverkhnostei del Petstso stepeni 4 nad konechnymi polyami”, UMN, 60:5(365) (2005), 161–162 | DOI | MR | Zbl

[41] S. Yu. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields”, Mosc. Math. J., 5:4 (2005), 919–926 | MR | Zbl

[42] V. A. Iskovskikh, “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 19–43 ; V. A. Iskovskikh, “Minimal models of rational surfaces over arbitrary fields”, Math. USSR-Izv., 14:1 (1980), 17–39 | MR | Zbl | DOI

[43] A. Trepalin, “Minimal del Pezzo surfaces of degree 2 over finite fields”, Bull. Korean Math. Soc., 54:5 (2017), 1779–1801 | MR

[44] E. Bombieri, D. Mumford, “Enriques' classification of surfaces in char. $p$. II”, Complex analysis and algebraic geometry, A collection of papers dedicated to K. Kodaira, Iwanami Shoten, Tokyo, 1977, 23–42 | MR | Zbl

[45] S. Yu. Rybakov, “Dzeta-funktsii biellipticheskikh poverkhnostei nad konechnymi polyami”, Matem. zametki, 83:2 (2008), 273–285 | DOI | MR | Zbl

[46] S. Yu. Rybakov, “Klassifikatsiya dzeta-funktsii biellipticheskikh poverkhnostei nad konechnymi polyami”, Matem. zametki, 99:3 (2016), 384–394 | DOI | MR | Zbl

[47] J. F. Voloch, “A note on elliptic curves over finite fields”, Bull. Soc. Math. France, 116:4 (1988), 455–458 | DOI | MR | Zbl

[48] R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, 46:2 (1987), 183–211 | DOI | MR | Zbl

[49] M. A. Tsfasman, “Gruppy tochek ellipticheskoi krivoi nad konechnym polem”, Tezisy dokladov vsesoyuznoi konferentsii {“}Teoriya chisel i ee prilozheniya{\rm”}, Izd-vo Tbilisskogo un-ta, Tbilisi, 1985, 286–287

[50] S. Rybakov, “The groups of points on abelian surfaces over finite fields”, Arithmetic, geometry, cryptography and coding theory, Contemp. Math., 574, Amer. Math. Soc., Providence, RI, 2012, 151–158 | DOI | MR | Zbl

[51] S. Rybakov, “The groups of points on abelian varieties over finite fields”, Cent. Eur. J. Math., 8:2 (2010), 282–288 | DOI | MR | Zbl

[52] S. Yu. Rybakov, A. S. Trepalin, “Minimalnye kubicheskie poverkhnosti nad konechnymi polyami”, Matem. sb., 208:9 (2017), 148–170 | DOI | MR

[53] P. Swinnerton-Dyer, “Cubic surfaces over finite fields”, Math. Proc. Cambridge Philos. Soc., 149:3 (2010), 385–388 | DOI | MR | Zbl

[54] B. Banwait, F. Fité, D. Loughran, Del Pezzo surfaces over finite fields and their Frobenius traces, 2016, 27 pp., arXiv: 1606.00300

[55] N. Kaplan, Rational point counts for del Pezzo surfaces over finite fields and coding theory, PhD diss., Harvard Univ., Cambridge, MA, 2013, vi+203 pp., \par https://dash.harvard.edu/handle/1/11124839

[56] N. Kaplan, Rational point count distributions for del Pezzo surfaces over finite fields, Talk given at AGCT-16 (CIRM), 2017, \par https://www.cirm-math.fr/ProgWeebly/Renc1608/Kaplan.pdf

[57] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl

[58] W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 521–560 | DOI | MR | Zbl

[59] M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Univ. Hamburg, 14:1 (1941), 197–272 | DOI | MR | Zbl

[60] H.-G. Rück, “Abelian surfaces and Jacobian varieties over finite fields”, Compositio Math., 76:3 (1990), 351–366 | MR | Zbl

[61] C. Xing, “The structure of the rational point groups of simple abelian varieties of dimension two over finite fields”, Arch. Math. (Basel), 63:5 (1994), 427–430 | DOI | MR | Zbl

[62] D. Maisner, E. Nart, “Abelian surfaces over finite fields as Jacobians”, Experiment. Math., 11:3 (2002), 321–337 | DOI | MR | Zbl

[63] C. Xing, “On supersingular abelian varieties of dimension two over finite fields”, Finite Fields Appl., 2:4 (1996), 407–421 | DOI | MR | Zbl

[64] S. Rybakov, “On classification of groups of points on abelian varieties over finite fields”, Mosc. Math. J., 15:4 (2015), 805–815 | MR | Zbl

[65] S. Rybakov, “Finite group subschemes of abelian varieties over finite fields”, Finite Fields Appl., 29 (2014), 132–150 | DOI | MR | Zbl

[66] L. Taelman, “$K3$ surfaces over finite fields with given $L$-function”, Algebra Number Theory, 10:5 (2016), 1133–1146 | DOI | MR | Zbl

[67] B. Mazur, “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc., 78 (1972), 653–667 | DOI | MR | Zbl

[68] B. Mazur, “Frobenius and the Hodge filtration (estimates)”, Ann. of Math. (2), 98 (1973), 58–95 | DOI | MR | Zbl

[69] J.-D. Yu, N. Yui, “$K3$ surfaces of finite height over finite fields”, J. Math. Kyoto Univ., 48:3 (2008), 499–519 | DOI | MR | Zbl

[70] J.-P. Serre, “Lettre à M. Tsfasman”, Journées arithmétiques. Exposés présentés aux seizièmes congrès (Luminy, France, 17–21 Juillet, 1989), Astérisque, 198–200, Soc. Math. France, Paris, 1991, 351–353 | MR | Zbl

[71] A. B. Sørensen, “Projective Reed–Muller codes”, IEEE Trans. Inform. Theory, 37:6 (1991), 1567–1576 | DOI | MR | Zbl

[72] M. Homma, S. J. Kim, “An elementary bound for the number of points of a hypersurface over a finite field”, Finite Fields Appl., 20 (2013), 76–83 | DOI | MR | Zbl

[73] M. Boguslavsky, “On the number of solutions of polynomial systems”, Finite Fields Appl., 3:4 (1997), 287–299 | DOI | MR | Zbl

[74] M. I. Boguslavskii, “Secheniya poverkhnostei Del Petstso i obobschennye vesa”, Probl. peredachi inform., 34:1 (1998), 18–29 | MR | Zbl

[75] M. Datta, S. R. Ghorpade, “On a conjecture of Tsfasman and an inequality of Serre for the number of points of hypersurfaces over finite fields”, Mosc. Math. J., 15:4 (2015), 715–725 | MR | Zbl

[76] M. Datta, S. R. Ghorpade, “Number of solutions of systems of homogeneous polynomial equations over finite fields”, Proc. Amer. Math. Soc., 145:2 (2017), 525–541 | DOI | MR | Zbl

[77] C. Zanella, “Linear sections of the finite Veronese varieties and authentication systems defined using geometry”, Des. Codes Cryptogr., 13:2 (1998), 199–212 | DOI | MR | Zbl

[78] P. Heijnen, R. Pellikaan, “Generalized Hamming weights of $q$-ary Reed–Muller codes”, IEEE Trans. Inform. Theory, 44:1 (1998), 181–196 | DOI | MR | Zbl

[79] D. Yu. Nogin, “Obobschennye vesa Khemminga dlya kodov na mnogomernykh kvadrikakh”, Probl. peredachi inform., 29:3 (1993), 21–30 | MR | Zbl

[80] Z. X. Wan, “The weight hierarchies of the projective codes from nondegenerate quadrics”, Des. Codes Cryptogr., 4:3 (1994), 283–300 | DOI | MR | Zbl

[81] J. Wolfmann, “Codes projectifs à deux ou trois poids associés aux hyperquadriques d'une géométrie finie”, Discrete Math., 13:2 (1975), 185–211 | DOI | MR | Zbl

[82] Y. Aubry, “Reed–Muller codes associated to projective algebraic varieties”, Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math., 1518, Springer, Berlin, 1992, 4–17 | DOI | MR | Zbl

[83] J. W. P. Hirschfeld, M. A. Tsfasman, S. G. Vlăduţ, “The weight hierarchy of higher dimensional Hermitian codes”, IEEE Trans. Inform. Theory, 40:1 (1994), 275–278 | DOI | Zbl

[84] I. M. Chakravarti, “Strongly regular graphs (two-class association schemes) and block designs from Hermitian varieties in a finite projective space $\operatorname{PG}(3,q^2)$”, Combinatorial mathematics and its applications, Proceedings of the second Chapel Hill conference (Univ. of North Carolina at Chapel Hill, May, 1970), Univ. North Carolina, Chapel Hill, NC, 1970, 58–66 | MR | Zbl

[85] I. M. Chakravarti, “Some properties and applications of Hermitian varieties in a finite projective space $\operatorname{PG}(N,q^2)$ in the construction of strongly regular graphs (two-class association schemes) and block designs”, J. Combinatorial Theory Ser. B, 11:3 (1971), 268–283 | DOI | MR | Zbl

[86] I. M. Chakravarti, “The generalized Goppa codes and related discrete designs from Hermitian surfaces in $\operatorname{PG}(3,s^2)$”, Coding theory and applications (Cachan, 1986), Lecture Notes in Comput. Sci., 311, Springer, Berlin, 1988, 116–124 | DOI | MR | Zbl

[87] I. M. Chakravarti, “Association schemes, orthogonal arrays and codes from non-degenerate quadrics and Hermitian varieties in finite projective geometries”, Calcutta Statist. Assoc. Bull., 40:157-160 (1990/1991), 89–96 | DOI | MR | Zbl

[88] J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1979, xii+474 pp. | MR | Zbl

[89] D. Yu. Nogin, “Codes associated to Grassmannians”, Arithmetic, geometry, and coding theory (Luminy, 1993), de Gruyter, Berlin, 1996, 145–154 | MR | Zbl

[90] C. Ryan, “An application of Grassmannian varieties to coding theory”, Congr. Numer., 57 (1987), 257–271 | MR | Zbl

[91] C. T. Ryan, “Projective codes based on Grassmann varieties”, Congr. Numer., 57 (1987), 273–279 | MR | Zbl

[92] C. T. Ryan, “The weight distribution of a code associated to intersection properties of the Grassmann variety $G(3,6)$”, Congr. Numer., 61 (1988), 183–198 | MR | Zbl

[93] C. T. Ryan, K. M. Ryan, “An application of geometry to the calculation of weight enumerators”, Congr. Numer., 67 (1988), 77–89 | MR | Zbl

[94] C. T. Ryan, K. M. Ryan, “The minimum weight of the Grassmann codes $C(k,n)$”, Discrete Appl. Math., 28:2 (1990), 149–156 | DOI | MR | Zbl

[95] D. Yu. Nogin, “Spektr kodov, assotsiirovannykh s mnogoobraziem Grassmana $G(3,6)$”, Probl. peredachi inform., 33:2 (1997), 26–36 | MR | Zbl

[96] K. V. Kaipa, H. K. Pillai, “Weight spectrum of codes associated with the Grassmannian $G(3,7)$”, IEEE Trans. Inform. Theory, 59:2 (2013), 986–993 | DOI | MR | Zbl

[97] S. R. Ghorpade, G. Lachaud, “Higher weights of Grassmann codes”, Coding theory, cryptography and related areas (Guanajuato, 1998), Springer, Berlin, 2000, 122–131 | MR | Zbl

[98] S. R. Ghorpade, M. A. Tsfasman, “Schubert varieties, linear codes and enumerative combinatorics”, Finite Fields Appl., 11:4 (2005), 684–699 | DOI | MR | Zbl

[99] X. Xiang, “On the minimum distance conjecture for Schubert codes”, IEEE Trans. Inform. Theory, 54:1 (2008), 486–488 | DOI | MR | Zbl

[100] F. Rodier, “Nombre de points des surfaces de Deligne et Lusztig”, J. Algebra, 227:2 (2000), 706–766 | DOI | MR | Zbl

[101] F. Rodier, “Codes from flag varieties over a finite field”, J. Pure Appl. Algebra, 178:2 (2003), 203–214 | DOI | MR | Zbl

[102] P. Deligne, G. Lusztig, “Representations of reductive groups over finite fields”, Ann. of Math. (2), 103:1 (1976), 103–161 | DOI | MR | Zbl