Varieties over finite fields: quantitative theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 261-322
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebraic varieties over finite fields are considered from the point of view of their invariants such as the number of points of a variety that are defined over the ground field and its extensions. The case of curves has been actively studied over the last thirty-five years, and hundreds of papers have been devoted to the subject. In dimension two or higher, the situation becomes much more difficult and has been little explored. This survey presents the main approaches to the problem and describes a major part of the known results in this direction.
Bibliography: 102 titles.
Keywords:
algebraic varieties over finite fields, zeta functions, points on surfaces, error-correcting codes, arithmetic statistics
Mots-clés : explicit formulae in arithmetic.
Mots-clés : explicit formulae in arithmetic.
@article{RM_2018_73_2_a1,
author = {S. G. Vl\u{a}du\c{t} and D. Yu. Nogin and M. A. Tsfasman},
title = {Varieties over finite fields: quantitative theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {261--322},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/}
}
TY - JOUR AU - S. G. Vlăduţ AU - D. Yu. Nogin AU - M. A. Tsfasman TI - Varieties over finite fields: quantitative theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 261 EP - 322 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/ LA - en ID - RM_2018_73_2_a1 ER -
S. G. Vlăduţ; D. Yu. Nogin; M. A. Tsfasman. Varieties over finite fields: quantitative theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 261-322. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/