Mots-clés : explicit formulae in arithmetic.
@article{RM_2018_73_2_a1,
author = {S. G. Vl\u{a}du\c{t} and D. Yu. Nogin and M. A. Tsfasman},
title = {Varieties over finite fields: quantitative theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {261--322},
year = {2018},
volume = {73},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/}
}
TY - JOUR AU - S. G. Vlăduţ AU - D. Yu. Nogin AU - M. A. Tsfasman TI - Varieties over finite fields: quantitative theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 261 EP - 322 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/ LA - en ID - RM_2018_73_2_a1 ER -
S. G. Vlăduţ; D. Yu. Nogin; M. A. Tsfasman. Varieties over finite fields: quantitative theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 261-322. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a1/
[1] S. G. Vleduts, D. Yu. Nogin, M. A. Tsfasman, Algebrogeometricheskie kody. Osnovnye ponyatiya, MTsNMO, M., 2003, 504 pp.; M. Tsfasman, S. Vlăduţ, D. Nogin, Algebraic geometric codes: basic notions, Math. Surveys Monogr., 139, Amer. Math. Soc., Providence, RI, 2007, xx+338 pp. | DOI | MR | Zbl
[2] H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisorenklassen endlicher Ordnung”, J. Reine Angew. Math., 1936:175 (1936), 55–62 ; “II. Automorphismen und Meromorphismen. Das Additionstheorem”, 69–88 ; “III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung”, 193–208 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[3] A. Weil, “Numbers of solutions of equations in finite fields”, Bull. Amer. Math. Soc., 55:5 (1949), 497–508 | DOI | MR | Zbl
[4] Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, xix+525 pp. ; v. 2, Lecture Notes in Math., 270, 1972, iv+418 pp. ; v. 3, Lecture Notes in Math., 305, 1973, vi+640 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[5] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR | Zbl
[6] B. Dwork, “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math., 82:3 (1960), 631–648 | DOI | MR | Zbl
[7] Y. Ihara, “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 721–724 | MR | Zbl
[8] S. G. Vleduts, V. G. Drinfeld, “O chisle tochek algebraicheskoi krivoi”, Funkts. analiz i ego pril., 17:1 (1983), 68–69 | MR | Zbl
[9] J.-P. Serre, Rational points on curves over finite fields: lectures given at Harvard University, Notes by F. Q. Gouvéa, Harvard Univ., Boston, 1985, 242 pp.
[10] M. A. Tsfasman, “Nombre de points des surfaces sur un corps fini”, Arithmetic, geometry and coding theory (Luminy, 1993), de Gruyter, Berlin, 1996, 209–224 | MR | Zbl
[11] M. A. Tsfasman, “Serre's theorem and measures corresponding to abelian varieties over finite fields”, Contemp. Math., Amer. Math. Soc., Providence, RI (to appear)
[12] M. A. Tsfasman, “Some remarks on the asymptotic number of points”, Coding theory and algebraic geometry, Lecture Notes in Math., 1518, Springer, Berlin, 1992, 178–192 | DOI | MR | Zbl
[13] M. A. Tsfasman, S. G. Vlăduţ, “Asymptotic properties of zeta-functions”, J. Math. Sci. (N. Y.), 84:5 (1997), 1445–1467 | DOI | MR | Zbl
[14] M. A. Tsfasman, S. G. Vlǎduţ, “Infinite global fields and the generalized Brauer–Siegel theorem”, Mosc. Math. J., 2:2 (2002), 329–402 | MR | Zbl
[15] C. Maire, “Finitude de tours et $p$-tours $T$-ramifiées modérées, $S$-décomposées”, J. Théor. Nombres Bordeaux, 8:1 (1996), 47–73 | DOI | MR | Zbl
[16] F. Hajir, C. Maire, “Tamely ramified towers and discriminant bounds for number fields”, Compositio Math., 128:1 (2001), 35–53 | DOI | MR | Zbl
[17] A. García, H. Stichtenoth, “A tower of Artin–Schreier extensions of function fields attaining the Drinfel'd–Vl{a}du{t} bound”, Invent. Math., 121:1 (1995), 211–222 | DOI | MR | Zbl
[18] A. Garcia, H. Stichtenoth, “Asymptotically good towers of function fields over finite fields”, C. R. Acad. Sci. Paris Sér. I Math., 322:11 (1996), 1067–1070 | MR | Zbl
[19] A. Garcia, H. Stichtenoth, “On the asymptotic behaviour of some towers of function fields over finite fields”, J. Number Theory, 61:2 (1996), 248–273 | DOI | MR | Zbl
[20] N. D. Elkies, “Explicit modular towers”, Proceedings of the 35th annual Allerton conference on communication, control and computing (1997), Univ. of Illinois, Urbana–Champaign, 1998, 23–32
[21] N. D. Elkies, “Explicit towers of Drinfeld modular curves”, European congress of mathematics (Barcelona, 2000), v. II, Progr. Math., 202, Birkhäuser, Basel, 2001, 189–198 | MR | Zbl
[22] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, “Towers of function fields over non-prime finite fields”, Mosc. Math. J., 15:1 (2015), 1–29 | MR | Zbl
[23] M. A. Tsfasman, S. G. Vlăduţ, Algebraic-geometric codes, Math. Appl. (Soviet Ser.), 58, Kluwer Acad. Publ., Dordrecht, 1991, xxiv+667 pp. | DOI | MR | Zbl
[24] M. Tsfasman, S. Vlăduţ, D. Nogin, Algebraic geometry codes: advanced chapters, Amer. Math. Soc., Providence, RI (to appear)
[25] G. Lachaud, M. A. Tsfasman, “Formules explicites pour le nombre de points des variétés sur un corps fini”, J. Reine Angew. Math., 493 (1997), 1–60 | MR | Zbl
[26] Y. Ihara, “On modular curves over finite fields”, Discrete subgroups of Lie groups and applications to moduli (Bombay, 1973), Oxford Univ. Press, Bombay, 1975, 161–202 | MR | Zbl
[27] M. A. Tsfasman, S. G. Vlǎduţ, Th. Zink, “Modular curves, Shimura curves, and Goppa codes, better than Varshamov–Gilbert bound”, Math. Nachr., 109 (1982), 21–28 | DOI | MR | Zbl
[28] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, “Galois towers over non-prime finite fields”, Acta Arith., 164:2 (2014), 163–179 | DOI | MR | Zbl
[29] Dzh. Miln, Etalnye kogomologii, Mir, M., 1983, 392 pp. ; J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | Zbl | MR | Zbl
[30] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1991, xiv+407 pp. | DOI | MR | Zbl
[31] B. Srinivasan, Representations of finite Chevalley groups: a survey, Lecture Notes in Math., 764, Springer-Verlag, Berlin–New York, 1979, x+177 pp. | DOI | MR | Zbl
[32] J. Wolfmann, “The number of solutions of certain diagonal equations over finite fields”, J. Number Theory, 42:3 (1992), 247–257 | DOI | MR | Zbl
[33] F. Rodier, “Nombre de points de surfaces de Deligne–Lusztig”, C. R. Acad. Sci. Paris Sér. I Math., 322:6 (1996), 563–566 | MR | Zbl
[34] Yu. I. Manin, M. A. Tsfasman, “Ratsionalnye mnogoobraziya: algebra, geometriya, arifmetika”, UMN, 41:2(248) (1986), 43–94 | MR | Zbl
[35] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972, 304 pp. ; Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | Zbl | MR | Zbl
[36] H. P. F. Swinnerton-Dyer, “The zeta function of a cubic surface over a finite field”, Proc. Cambridge Philos. Soc., 63 (1967), 55–71 | DOI | MR | Zbl
[37] T. Urabe, “Calculation of Manin's invariant for Del Pezzo surfaces”, Math. Comp., 65:213 (1996), 247–258 | DOI | MR | Zbl
[38] N. I. Shepherd-Barron, “Geography for surfaces of general type in positive characteristic”, Invent. Math., 106:2 (1991), 263–274 | DOI | MR | Zbl
[39] W. E. Lang, “On the Euler number of algebraic surfaces in characteristic $p$”, Amer. J. Math., 102:3 (1980), 511–516 | DOI | MR | Zbl
[40] S. Yu. Rybakov, “Dzeta-funktsii rassloenii na koniki i poverkhnostei del Petstso stepeni 4 nad konechnymi polyami”, UMN, 60:5(365) (2005), 161–162 | DOI | MR | Zbl
[41] S. Yu. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields”, Mosc. Math. J., 5:4 (2005), 919–926 | MR | Zbl
[42] V. A. Iskovskikh, “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 19–43 ; V. A. Iskovskikh, “Minimal models of rational surfaces over arbitrary fields”, Math. USSR-Izv., 14:1 (1980), 17–39 | MR | Zbl | DOI
[43] A. Trepalin, “Minimal del Pezzo surfaces of degree 2 over finite fields”, Bull. Korean Math. Soc., 54:5 (2017), 1779–1801 | MR
[44] E. Bombieri, D. Mumford, “Enriques' classification of surfaces in char. $p$. II”, Complex analysis and algebraic geometry, A collection of papers dedicated to K. Kodaira, Iwanami Shoten, Tokyo, 1977, 23–42 | MR | Zbl
[45] S. Yu. Rybakov, “Dzeta-funktsii biellipticheskikh poverkhnostei nad konechnymi polyami”, Matem. zametki, 83:2 (2008), 273–285 | DOI | MR | Zbl
[46] S. Yu. Rybakov, “Klassifikatsiya dzeta-funktsii biellipticheskikh poverkhnostei nad konechnymi polyami”, Matem. zametki, 99:3 (2016), 384–394 | DOI | MR | Zbl
[47] J. F. Voloch, “A note on elliptic curves over finite fields”, Bull. Soc. Math. France, 116:4 (1988), 455–458 | DOI | MR | Zbl
[48] R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, 46:2 (1987), 183–211 | DOI | MR | Zbl
[49] M. A. Tsfasman, “Gruppy tochek ellipticheskoi krivoi nad konechnym polem”, Tezisy dokladov vsesoyuznoi konferentsii {“}Teoriya chisel i ee prilozheniya{\rm”}, Izd-vo Tbilisskogo un-ta, Tbilisi, 1985, 286–287
[50] S. Rybakov, “The groups of points on abelian surfaces over finite fields”, Arithmetic, geometry, cryptography and coding theory, Contemp. Math., 574, Amer. Math. Soc., Providence, RI, 2012, 151–158 | DOI | MR | Zbl
[51] S. Rybakov, “The groups of points on abelian varieties over finite fields”, Cent. Eur. J. Math., 8:2 (2010), 282–288 | DOI | MR | Zbl
[52] S. Yu. Rybakov, A. S. Trepalin, “Minimalnye kubicheskie poverkhnosti nad konechnymi polyami”, Matem. sb., 208:9 (2017), 148–170 | DOI | MR
[53] P. Swinnerton-Dyer, “Cubic surfaces over finite fields”, Math. Proc. Cambridge Philos. Soc., 149:3 (2010), 385–388 | DOI | MR | Zbl
[54] B. Banwait, F. Fité, D. Loughran, Del Pezzo surfaces over finite fields and their Frobenius traces, 2016, 27 pp., arXiv: 1606.00300
[55] N. Kaplan, Rational point counts for del Pezzo surfaces over finite fields and coding theory, PhD diss., Harvard Univ., Cambridge, MA, 2013, vi+203 pp., \par https://dash.harvard.edu/handle/1/11124839
[56] N. Kaplan, Rational point count distributions for del Pezzo surfaces over finite fields, Talk given at AGCT-16 (CIRM), 2017, \par https://www.cirm-math.fr/ProgWeebly/Renc1608/Kaplan.pdf
[57] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl
[58] W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 521–560 | DOI | MR | Zbl
[59] M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Univ. Hamburg, 14:1 (1941), 197–272 | DOI | MR | Zbl
[60] H.-G. Rück, “Abelian surfaces and Jacobian varieties over finite fields”, Compositio Math., 76:3 (1990), 351–366 | MR | Zbl
[61] C. Xing, “The structure of the rational point groups of simple abelian varieties of dimension two over finite fields”, Arch. Math. (Basel), 63:5 (1994), 427–430 | DOI | MR | Zbl
[62] D. Maisner, E. Nart, “Abelian surfaces over finite fields as Jacobians”, Experiment. Math., 11:3 (2002), 321–337 | DOI | MR | Zbl
[63] C. Xing, “On supersingular abelian varieties of dimension two over finite fields”, Finite Fields Appl., 2:4 (1996), 407–421 | DOI | MR | Zbl
[64] S. Rybakov, “On classification of groups of points on abelian varieties over finite fields”, Mosc. Math. J., 15:4 (2015), 805–815 | MR | Zbl
[65] S. Rybakov, “Finite group subschemes of abelian varieties over finite fields”, Finite Fields Appl., 29 (2014), 132–150 | DOI | MR | Zbl
[66] L. Taelman, “$K3$ surfaces over finite fields with given $L$-function”, Algebra Number Theory, 10:5 (2016), 1133–1146 | DOI | MR | Zbl
[67] B. Mazur, “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc., 78 (1972), 653–667 | DOI | MR | Zbl
[68] B. Mazur, “Frobenius and the Hodge filtration (estimates)”, Ann. of Math. (2), 98 (1973), 58–95 | DOI | MR | Zbl
[69] J.-D. Yu, N. Yui, “$K3$ surfaces of finite height over finite fields”, J. Math. Kyoto Univ., 48:3 (2008), 499–519 | DOI | MR | Zbl
[70] J.-P. Serre, “Lettre à M. Tsfasman”, Journées arithmétiques. Exposés présentés aux seizièmes congrès (Luminy, France, 17–21 Juillet, 1989), Astérisque, 198–200, Soc. Math. France, Paris, 1991, 351–353 | MR | Zbl
[71] A. B. Sørensen, “Projective Reed–Muller codes”, IEEE Trans. Inform. Theory, 37:6 (1991), 1567–1576 | DOI | MR | Zbl
[72] M. Homma, S. J. Kim, “An elementary bound for the number of points of a hypersurface over a finite field”, Finite Fields Appl., 20 (2013), 76–83 | DOI | MR | Zbl
[73] M. Boguslavsky, “On the number of solutions of polynomial systems”, Finite Fields Appl., 3:4 (1997), 287–299 | DOI | MR | Zbl
[74] M. I. Boguslavskii, “Secheniya poverkhnostei Del Petstso i obobschennye vesa”, Probl. peredachi inform., 34:1 (1998), 18–29 | MR | Zbl
[75] M. Datta, S. R. Ghorpade, “On a conjecture of Tsfasman and an inequality of Serre for the number of points of hypersurfaces over finite fields”, Mosc. Math. J., 15:4 (2015), 715–725 | MR | Zbl
[76] M. Datta, S. R. Ghorpade, “Number of solutions of systems of homogeneous polynomial equations over finite fields”, Proc. Amer. Math. Soc., 145:2 (2017), 525–541 | DOI | MR | Zbl
[77] C. Zanella, “Linear sections of the finite Veronese varieties and authentication systems defined using geometry”, Des. Codes Cryptogr., 13:2 (1998), 199–212 | DOI | MR | Zbl
[78] P. Heijnen, R. Pellikaan, “Generalized Hamming weights of $q$-ary Reed–Muller codes”, IEEE Trans. Inform. Theory, 44:1 (1998), 181–196 | DOI | MR | Zbl
[79] D. Yu. Nogin, “Obobschennye vesa Khemminga dlya kodov na mnogomernykh kvadrikakh”, Probl. peredachi inform., 29:3 (1993), 21–30 | MR | Zbl
[80] Z. X. Wan, “The weight hierarchies of the projective codes from nondegenerate quadrics”, Des. Codes Cryptogr., 4:3 (1994), 283–300 | DOI | MR | Zbl
[81] J. Wolfmann, “Codes projectifs à deux ou trois poids associés aux hyperquadriques d'une géométrie finie”, Discrete Math., 13:2 (1975), 185–211 | DOI | MR | Zbl
[82] Y. Aubry, “Reed–Muller codes associated to projective algebraic varieties”, Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math., 1518, Springer, Berlin, 1992, 4–17 | DOI | MR | Zbl
[83] J. W. P. Hirschfeld, M. A. Tsfasman, S. G. Vlăduţ, “The weight hierarchy of higher dimensional Hermitian codes”, IEEE Trans. Inform. Theory, 40:1 (1994), 275–278 | DOI | Zbl
[84] I. M. Chakravarti, “Strongly regular graphs (two-class association schemes) and block designs from Hermitian varieties in a finite projective space $\operatorname{PG}(3,q^2)$”, Combinatorial mathematics and its applications, Proceedings of the second Chapel Hill conference (Univ. of North Carolina at Chapel Hill, May, 1970), Univ. North Carolina, Chapel Hill, NC, 1970, 58–66 | MR | Zbl
[85] I. M. Chakravarti, “Some properties and applications of Hermitian varieties in a finite projective space $\operatorname{PG}(N,q^2)$ in the construction of strongly regular graphs (two-class association schemes) and block designs”, J. Combinatorial Theory Ser. B, 11:3 (1971), 268–283 | DOI | MR | Zbl
[86] I. M. Chakravarti, “The generalized Goppa codes and related discrete designs from Hermitian surfaces in $\operatorname{PG}(3,s^2)$”, Coding theory and applications (Cachan, 1986), Lecture Notes in Comput. Sci., 311, Springer, Berlin, 1988, 116–124 | DOI | MR | Zbl
[87] I. M. Chakravarti, “Association schemes, orthogonal arrays and codes from non-degenerate quadrics and Hermitian varieties in finite projective geometries”, Calcutta Statist. Assoc. Bull., 40:157-160 (1990/1991), 89–96 | DOI | MR | Zbl
[88] J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1979, xii+474 pp. | MR | Zbl
[89] D. Yu. Nogin, “Codes associated to Grassmannians”, Arithmetic, geometry, and coding theory (Luminy, 1993), de Gruyter, Berlin, 1996, 145–154 | MR | Zbl
[90] C. Ryan, “An application of Grassmannian varieties to coding theory”, Congr. Numer., 57 (1987), 257–271 | MR | Zbl
[91] C. T. Ryan, “Projective codes based on Grassmann varieties”, Congr. Numer., 57 (1987), 273–279 | MR | Zbl
[92] C. T. Ryan, “The weight distribution of a code associated to intersection properties of the Grassmann variety $G(3,6)$”, Congr. Numer., 61 (1988), 183–198 | MR | Zbl
[93] C. T. Ryan, K. M. Ryan, “An application of geometry to the calculation of weight enumerators”, Congr. Numer., 67 (1988), 77–89 | MR | Zbl
[94] C. T. Ryan, K. M. Ryan, “The minimum weight of the Grassmann codes $C(k,n)$”, Discrete Appl. Math., 28:2 (1990), 149–156 | DOI | MR | Zbl
[95] D. Yu. Nogin, “Spektr kodov, assotsiirovannykh s mnogoobraziem Grassmana $G(3,6)$”, Probl. peredachi inform., 33:2 (1997), 26–36 | MR | Zbl
[96] K. V. Kaipa, H. K. Pillai, “Weight spectrum of codes associated with the Grassmannian $G(3,7)$”, IEEE Trans. Inform. Theory, 59:2 (2013), 986–993 | DOI | MR | Zbl
[97] S. R. Ghorpade, G. Lachaud, “Higher weights of Grassmann codes”, Coding theory, cryptography and related areas (Guanajuato, 1998), Springer, Berlin, 2000, 122–131 | MR | Zbl
[98] S. R. Ghorpade, M. A. Tsfasman, “Schubert varieties, linear codes and enumerative combinatorics”, Finite Fields Appl., 11:4 (2005), 684–699 | DOI | MR | Zbl
[99] X. Xiang, “On the minimum distance conjecture for Schubert codes”, IEEE Trans. Inform. Theory, 54:1 (2008), 486–488 | DOI | MR | Zbl
[100] F. Rodier, “Nombre de points des surfaces de Deligne et Lusztig”, J. Algebra, 227:2 (2000), 706–766 | DOI | MR | Zbl
[101] F. Rodier, “Codes from flag varieties over a finite field”, J. Pure Appl. Algebra, 178:2 (2003), 203–214 | DOI | MR | Zbl
[102] P. Deligne, G. Lusztig, “Representations of reductive groups over finite fields”, Ann. of Math. (2), 103:1 (1976), 103–161 | DOI | MR | Zbl