Ornstein–Uhlenbeck operators and semigroups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 191-260
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey gives an account of the state of the art of the theory of Ornstein–Uhlenbeck operators and semigroups. The domains of definition and the spectra of such operators are considered, along with related Sobolev classes with respect to Gaussian measures. Considerable attention is given to various functional inequalities involving such operators and semigroups. Generalized Mehler semigroups are briefly discussed. Major recent achievements are presented and remaining open problems are indicated. Bibliography: 214 titles.
Keywords: Ornstein–Uhlenbeck operator, Ornstein–Uhlenbeck semigroup, Gaussian measure, Chebyshev–Hermite polynomial, Mehler formula.
@article{RM_2018_73_2_a0,
     author = {V. I. Bogachev},
     title = {Ornstein{\textendash}Uhlenbeck operators and semigroups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {191--260},
     year = {2018},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_2_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Ornstein–Uhlenbeck operators and semigroups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 191
EP  - 260
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_2_a0/
LA  - en
ID  - RM_2018_73_2_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Ornstein–Uhlenbeck operators and semigroups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 191-260
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2018_73_2_a0/
%G en
%F RM_2018_73_2_a0
V. I. Bogachev. Ornstein–Uhlenbeck operators and semigroups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 2, pp. 191-260. http://geodesic.mathdoc.fr/item/RM_2018_73_2_a0/

[1] I. Abu-Falahah, J. L. Torrea, “Hermite function expansions versus Hermite polynomial expansions”, Glasg. Math. J., 48:2 (2006), 203–215 | DOI | MR | Zbl

[2] H. Aimar, L. Forzani, R. Scotto, “On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis”, Trans. Amer. Math. Soc., 359:5 (2007), 2137–2154 | DOI | MR | Zbl

[3] S. Albeverio, H. Röckle, V. Steblovskaya, “Asymptotic expansions for Ornstein–Uhlenbeck semigroups perturbed by potentials over Banach spaces”, Stochastics Stochastics Rep., 69:3-4 (2000), 195–238 | DOI | MR | Zbl

[4] J. M. Aldaz, “Dimension dependency of the weak type $(1,1)$ bounds for maximal functions associated to finite radial measures”, Bull. Lond. Math. Soc., 39:2 (2007), 203–208 | DOI | MR | Zbl

[5] L. Ambrosio, A. Figalli, “Surface measures and convergence of the Ornstein–Uhlenbeck semigroup in Wiener spaces”, Ann. Fac. Sci. Toulouse Math. (6), 20:2 (2011), 407–438 | DOI | MR | Zbl

[6] A. Amenta, J. Teuwen, “$L^{p}$-$L^{q}$ off-diagonal estimates for the Ornstein–Uhlenbeck semigroup: some positive and negative results”, Bull. Austral. Math. Soc., 96:1 (2017), 154–161 | DOI | MR | Zbl

[7] C. Ané, S. Blachère, D. Chafa{ï}, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panor. Synthèses, 10, Soc. Math. France, Paris, 2000, xvi+217 pp. | MR | Zbl

[8] D. Applebaum, “Covariant Mehler semigroups in Hilbert space”, Markov Process. Related Fields, 13:1 (2007), 159–168 | MR | Zbl

[9] D. Applebaum, J. van Neerven, “Second quantisation for skew convolution products of infinitely divisible measures”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:1 (2015), 1550003, 12 pp. | DOI | MR | Zbl

[10] J. Assaad, J. van Neerven, “$L^2$-theory for non-symmetric Ornstein–Uhlenbeck semigroups on domains”, J. Evol. Equ., 13:1 (2013), 107–134 | DOI | MR | Zbl

[11] D. Bakry, “Transformations de Riesz pour les semi-groupes symétriques I. Étude de la dimension 1”, Séminaire de probabilités XIX (1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 130–144 ; “II. Étude sous la condition $\Gamma_2\geq 0$”, 145–174 | DOI | MR | Zbl | DOI | MR | Zbl

[12] D. Bakry, “L'hypercontractivité et son utilization en théorie des semigroupes”, Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., 1581, Springer, Berlin, 1994, 1–114 | DOI | MR | Zbl

[13] D. Bakry, F. Bolley, I. Gentil, “Dimension dependent hypercontractivity for Gaussian kernels”, Probab. Theory Related Fields, 154:3-4 (2012), 845–874 | DOI | MR | Zbl

[14] D. Bakry, M. Émery, “Diffusions hypercontractives”, Séminaire de Probabilités XIX (1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR | Zbl

[15] D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wiss., 348, Springer, Cham, 2014, xx+552 pp. | DOI | MR | Zbl

[16] D. Bakry, M. Ledoux, “A logarithmic Sobolev form of the Li–Yau parabolic inequality”, Rev. Mat. Iberoam., 22:2 (2006), 683–702 | DOI | MR | Zbl

[17] K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, P. Wolff, “$L^1$-smoothing for the Ornstein–Uhlenbeck semigroup”, Mathematika, 59:1 (2013), 160–168 | DOI | MR | Zbl

[18] W. Beckner, “A generalized Poincaré inequality for Gaussian measures”, Proc. Amer. Math. Soc., 105:2 (1989), 397–400 | DOI | MR | Zbl

[19] W. Beckner, “Geometric asymptotics and the logarithmic Sobolev inequality”, Forum Math., 11:1 (1999), 105–137 | DOI | MR | Zbl

[20] A. Bentaleb, S. Fahlaoui, A. Hafidi, “Psi-entropy inequalities for the Ornstein–Uhlenbeck semigroup”, Semigroup Forum, 85:2 (2012), 361–368 | DOI | MR | Zbl

[21] Yu. M. Berezanskii, Yu. G. Kondratev, Spektralnye metody v beskonechnomernom analize, Naukova dumka, Kiev, 1988, 680 pp. ; Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis, v. 1, 2, Math. Phys. Appl. Math., 12/1-2, Kluwer Academic Publ., Dordrecht, 1995, xviii+576 pp., viii+432 pp. | MR | Zbl | DOI | MR | Zbl

[22] J. J. Betancor, J. C. Fariña, A. Sanabria, “Vector valued multivariate spectral multipliers, Littlewood–Paley functions, and Sobolev spaces in the Hermite setting”, Monatsh. Math., 176:2 (2015), 165–195 | DOI | MR | Zbl

[23] J. Betancor, L. Forzani, R. Scotto, W. O. Urbina, “On the maximal function for the generalized Ornstein–Uhlenbeck semigroup”, Quaest. Math., 30:4 (2007), 471–482 | DOI | MR | Zbl

[24] S. G. Bobkov, N. Gozlan, C. Roberto, P.-M. Samson, “Bounds on the deficit in the logarithmic Sobolev inequality”, J. Funct. Anal., 267:11 (2014), 4110–4138 | DOI | MR | Zbl

[25] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997, 352 pp. ; V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | MR | Zbl | DOI | MR | Zbl

[26] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 544 pp.; V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl

[27] V. I. Bogachev, “Sobolev classes on infinite-dimensional spaces”, Geometric measure theory and real analysis, CRM Series, 17, Edizione della Normale, Pisa, 2014, 1–56 | MR | Zbl

[28] V. I. Bogachev, “Raspredeleniya mnogochlenov na mnogomernykh i beskonechnomernykh prostranstvakh s merami”, UMN, 71:4(430) (2016), 107–154 | DOI | MR | Zbl

[29] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl

[30] V. I. Bogachev, E. D. Kosov, S. N. Popova, “O gaussovskikh klassakh Nikolskogo–Besova”, Dokl. RAN, 476:6 (2017), 609–613 | DOI | Zbl

[31] V. I. Bogachev, E. D. Kosov, S. N. Popova, A new approach to Nikolskii–Besov classes, 2017, 27 pp., arXiv: 1707.06477

[32] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI

[33] V. I. Bogachev, N. Krylov, M. Röckner, “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl

[34] V. I. Bogachev, N. V. Krylov, M. Rëkner, “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6(390) (2009), 5–116 | DOI | MR | Zbl

[35] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl

[36] V. Bogachev, P. Lescot, M. Röckner, “The martingale problem for pseudo-differential operators on infinite-dimensional spaces”, Nagoya Math. J., 153 (1999), 101–118 | DOI | MR | Zbl

[37] V. I. Bogachev, S. N. Popova, S. V. Shaposhnikov, On $L^1$-estimates for probability solutions to Fokker–Planck–Kolmogorov equations, 2018, 16 pp., arXiv: 1803.04568

[38] V. I. Bogachev, M. Röckner, “Mehler formula and capacities for infinite-dimensional Ornstein–Uhlenbeck processes with general linear drift”, Osaka J. Math., 32:2 (1995), 237–274 | MR | Zbl

[39] V. I. Bogachev, M. Röckner, B. Schmuland, “Generalized Mehler semigroups and applications”, Probab. Theory Related Fields, 105:2 (1996), 193–225 | DOI | MR | Zbl

[40] V. I. Bogachev, F.-Yu. Vang, A. V. Shaposhnikov, “Otsenki norm Kantorovicha na mnogoobraziyakh”, Dokl. RAN, 463:6 (2015), 633–638 | DOI | MR | Zbl

[41] V. I. Bogachev, F.-Yu. Vang, A. V. Shaposhnikov, “O neravenstvakh, svyazyvayuschikh normy Soboleva i Kantorovicha”, Dokl. RAN, 468:2 (2016), 131–133 | DOI | MR | Zbl

[42] F. Bolley, I. Gentil, “Phi-entropy inequalities for diffusion semigroups”, J. Math. Pures Appl. (9), 93:5 (2010), 449–473 | DOI | MR | Zbl

[43] M. Bo.{z}ejko, “Ultracontractivity and strong Sobolev inequality for $q$-Ornstein–Uhlenbeck semigroup ($-11$)”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:2 (1999), 203–220 | DOI | MR | Zbl

[44] A. Carbonaro, O. Dragičević, “Functional calculus for generators of symmetric contraction semigroups”, Duke Math. J., 166:5 (2017), 937–974 | DOI | MR | Zbl

[45] A. Carbonaro, G. Mauceri, S. Meda, “Comparison of spaces of Hardy type for the Ornstein–Uhlenbeck operator”, Potential Anal., 33:1 (2010), 85–105 | DOI | MR | Zbl

[46] P. L. Chebyshev, “O razlozhenii funktsii odnoi peremennoi”, Polnoe sobranie sochinenii, v. II, Izd-vo AN SSSR, M.–L., 1947, 336–341 ; СочинРμРЅРёСЏ Рџ. Р›. Р§РμбышРμРІР°, С‚. I, Р�РјРї. Акад. наук, РЎРџР±., 1899, 501–508 ; P. L. Chebyshev, “Sur le développement des fonctions à une seule variable”, Bull. Acad. Sci. St. Petersb., I (1859), 193–200 | MR | Zbl | Zbl

[47] Y. Chen, Y. Liu, “On the eigenfunctions of the complex Ornstein–Uhlenbeck operators”, Kyoto J. Math., 54:3 (2014), 577–596 | DOI | MR | Zbl

[48] R. Chill, E. Fašangová, G. Metafune, D. Pallara, “The sector of analyticity of the Ornstein–Uhlenbeck semigroup on $L^p$ spaces with respect to invariant measure”, J. London Math. Soc. (2), 71:3 (2005), 703–722 | DOI | MR | Zbl

[49] A. Chojnowska-Michalik, B. Goldys, “On regularity properties of nonsymmetric Ornstein–Uhlenbeck semigroup in $L^p$ spaces”, Stochastics Stochastics Rep., 59:3-4 (1996), 183–209 | DOI | MR | Zbl

[50] A. Chojnowska-Michalik, B. Goldys, “Generalized Ornstein–Uhlenbeck semigroups: Littlewood–Paley–Stein inequalities and the P. A. Meyer equivalence of norms”, J. Funct. Anal., 182:2 (2001), 243–279 | DOI | MR | Zbl

[51] A. Chojnowska-Michalik, B. Goldys, “Symmetric Ornstein–Uhlenbeck semigroups and their generators”, Probab. Theory Related Fields, 124:4 (2002), 459–486 | DOI | MR | Zbl

[52] A. Cianchi, L. Pick, “Optimal Gaussian Sobolev embeddings”, J. Funct. Anal., 256:11 (2009), 3588–3642 | DOI | MR | Zbl

[53] E. G. D. Cohen, “George E. Uhlenbeck and statistical mechanics”, Amer. J. Phys., 58:7 (1990), 619–625 | DOI | MR

[54] M. G. Cowling, “Harmonic analysis on semigroups”, Ann. of Math. (2), 117:2 (1983), 267–283 | DOI | MR | Zbl

[55] P. Da Pelo, A. Lanconelli, A. I. Stan, “An extension of the Beckner's type Poincaré inequality to convolution measures on abstract Wiener spaces”, Stoch. Anal. Appl., 34:1 (2016), 47–64 | DOI | MR | Zbl

[56] G. Da Prato, A. Lunardi, “On the Ornstein–Uhlenbeck operator in spaces of continuous functions”, J. Funct. Anal., 131:1 (1995), 94–114 | DOI | MR | Zbl

[57] G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996, xii+339 pp. | DOI | MR | Zbl

[58] B. Dacorogna, N. Fusco, L. Tartar, “On the solvability of the equation $\operatorname{div}u=f$ in $L^1$ and in $C^0$”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:3 (2003), 239–245 | MR | Zbl

[59] E. B. Davies, One-parameter semigroups, London Math. Soc. Monogr., 15, Academic Press, Inc., London–New York, 1980, viii+230 pp. | MR | Zbl

[60] D. A. Dawson, Z. Li, “Non-differentiable skew convolution semigroups and related Ornstein–Uhlenbeck processes”, Potential Anal., 20:3 (2004), 285–302 | DOI | MR | Zbl

[61] D. A. Dawson, Z. Li, B. Schmuland, W. Sun, “Generalized Mehler semigroups and catalytic branching processes with immigration”, Potential Anal., 21:1 (2004), 75–97 | DOI | MR | Zbl

[62] M. Del Pino, J. Dolbeault, “The optimal Euclidean $L^p$-Sobolev logarithmic inequality”, J. Funct. Anal., 197:1 (2003), 151–161 | DOI | MR | Zbl

[63] R. Donninger, B. Schörkhuber, “A spectral mapping theorem for perturbed Ornstein–Uhlenbeck operators on $L^2(\mathbb R^d)$”, J. Funct. Anal., 268:9 (2015), 2479–2524 | DOI | MR | Zbl

[64] J. L. Doob, “The Brownian movement and stochastic equations”, Ann. of Math. (2), 43 (1942), 351–369 | DOI | MR | Zbl

[65] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, M., 1963, 859 pp. ; E. B. Dynkin, Markov processes, v. 1,\;2, Grundlehren Math. Wiss., 121, 122, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965, xii+365 pp., viii+274 pp. | MR | Zbl | DOI | MR | Zbl

[66] R. Eldan, J. R. Lee, Regularization under diffusion and anti-concentration of temperature, 2014 (v3 – 2017), 25 pp., arXiv: 1410.3887v1

[67] E. B. Fabes, C. E. Gutiérrez, R. Scotto, “Weak-type estimates for the Riesz transforms associated with the Gaussian measure”, Rev. Mat. Iberoam., 10:2 (1994), 229–281 | DOI | MR | Zbl

[68] S. Fang, Introduction to Malliavin calculus, Mathematics Series for Graduate Students, 3, Tsinghua Univ. Press, Springer, Beijing, 2004, x+153 pp.

[69] W. G. Faris, “Ornstein–Uhlenbeck and renormalization semigroups”, Mosc. Math. J., 1:3 (2001), 389–405 | MR | Zbl

[70] P. Federbush, “Partially alternate derivation of a result of Nelson”, J. Math. Phys., 10 (1969), 50–52 | DOI | Zbl

[71] F. Feo, E. Indrei, M. R. Posteraro, C. Roberto, “Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure”, Potential Anal., 47:1 (2017), 37–52 | DOI | MR | Zbl

[72] V. A. Fok, Nachala kvantovoi mekhaniki, Kubuch, L., 1932, 251 pp.

[73] S. Fornaro, A. Rhandi, “On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces”, Discrete Contin. Dyn. Syst., 33:11-12 (2013), 5049–5058 | DOI | MR | Zbl

[74] L. Forzani, R. Scotto, “The higher order Riesz transform for Gaussian measure need not be of weak type $(1,1)$”, Studia Math., 131:3 (1998), 205–214 | MR | Zbl

[75] L. Forzani, R. Scotto, P. Sjögren, W. Urbina, “On the $L^p$ boundedness of the non-centered Gaussian Hardy–Littlewood maximal function”, Proc. Amer. Math. Soc., 130:1 (2002), 73–79 | DOI | MR | Zbl

[76] L. Forzani, R. Scotto, W. Urbina, “Riesz and Bessel potentials, the $g^k$ functions and an area function for the Gaussian measure $\gamma$”, Rev. Un. Mat. Argentina, 42:1 (2000), 17–37 | MR | Zbl

[77] M. Fuhrman, “Hypercontractivity properties of nonsymmetric Ornstein–Uhlenbeck semigroups in Hilbert spaces”, Stoch. Anal. Appl., 16:2 (1998), 241–260 | DOI | MR | Zbl

[78] M. Fuhrman, M. Röckner, “Generalized Mehler semigroups: the non-Gaussian case”, Potential Anal., 12 (2000), 1–47 | DOI | MR | Zbl

[79] Y. Fujita, “A supplementary proof of $L^p$-logarithmic Sobolev inequality”, Ann. Fac. Sci. Toulouse Math. (6), 24:1 (2015), 119–132 | DOI | MR | Zbl

[80] M. Fukushima, M. Hino, “On the space of $BV$ functions and a related stochastic calculus in infinite dimensions”, J. Funct. Anal., 183:1 (2001), 245–268 | DOI | MR | Zbl

[81] J. Garcí{a}-Cuerva, G. Mauceri, S. Meda, P. Sjögren, J. L. Torrea, “Functional calculus for the Ornstein–Uhlenbeck operator”, J. Funct. Anal., 183:2 (2001), 413–450 | DOI | MR | Zbl

[82] J. Garcí{a}-Cuerva, G. Mauceri, S. Meda, P. Sjögren, J. L. Torrea, “Maximal operators for the holomorphic Ornstein–Uhlenbeck semigroup”, J. London Math. Soc. (2), 67:1 (2003), 219–234 | DOI | MR | Zbl

[83] J. Garcí{a}-Cuerva, G. Mauceri, P. Sjögren, J. L. Torrea, “Spectral multipliers for the Ornstein–Uhlenbeck semigroup”, J. Anal. Math., 78 (1999), 281–305 | DOI | MR | Zbl

[84] J. Garcí{a}-Cuerva, G. Mauceri, P. Sjögren, J. L. Torrea, “Higher-order Riesz operators for the Ornstein–Uhlenbeck semigroup”, Potential Anal., 10:4 (1999), 379–407 | DOI | MR | Zbl

[85] A. E. Gatto, E. Pineda, W. O. Urbina, “Riesz potentials, Bessel potentials, and fractional derivatives on Besov–Lipschitz spaces for the Gaussian measure”, Recent advances in harmonic analysis and applications, Springer Proc. Math. Stat., 25, Springer, New York, 2013, 105–130 | DOI | MR | Zbl

[86] A. E. Gatto, E. Pineda, W. O. Urbina, “Riesz potentials, Bessel potentials and fractional derivatives on Triebel–Lizorkin spaces for the Gaussian measure”, J. Math. Anal. Appl., 422:2 (2015), 798–818 | DOI | MR | Zbl

[87] A. E. Gatto, W. O. Urbina R., “On Gaussian Lipschitz spaces and the boundedness of fractional integrals and fractional derivatives on them”, Quaest. Math., 38:1 (2015), 1–25 | DOI | MR | Zbl

[88] S. Geiss, A. Toivola, “On fractional smoothness and $L_p$-approximation on the Gaussian space”, Ann. Probab., 43:2 (2015), 605–638 | DOI | MR | Zbl

[89] M. Geissert, H. Heck, M. Hieber, I. Wood, “The Ornstein–Uhlenbeck semigroup in exterior domains”, Arch. Math. (Basel), 85:6 (2005), 554–562 | DOI | MR | Zbl

[90] I. Gentil, “The general optimal $L^p$-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations”, J. Funct. Anal., 202:2 (2003), 591–599 | DOI | MR | Zbl

[91] J. Glimm, “Boson fields with nonlinear selfinteraction in two dimensions”, Comm. Math. Phys., 8:1 (1968), 12–25 | DOI | Zbl

[92] B. Goldys, “On analyticity of Ornstein–Uhlenbeck semigroups”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10:3 (1999), 131–140 | MR | Zbl

[93] B. Goldys, J. M. A. M. van Neerven, “Transition semigroups of Banach space-valued Ornstein–Uhlenbeck processes”, Acta Appl. Math., 76:3 (2003), 283–330 | DOI | MR | Zbl

[94] F.-Z. Gong, Y. Liu, Y. Liu, D.-J. Luo, “Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener spaces”, J. Funct. Anal., 266:9 (2014), 5639–5675 | DOI | MR | Zbl

[95] L. Gross, “Potential theory on Hilbert space”, J. Funct. Anal., 1:2 (1967), 123–181 | DOI | MR | Zbl

[96] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR | Zbl

[97] C. E. Gutiérrez, C. Segovia, J. L. Torrea, “On higher Riesz transforms for Gaussian measures”, J. Fourier Anal. Appl., 2:6 (1996), 583–596 | DOI | MR | Zbl

[98] C. E. Gutiérrez, W. O. Urbina, “Estimates for the maximal operator of the Ornstein–Uhlenbeck semigroup”, Proc. Amer. Math. Soc., 113:1 (1991), 99–104 | DOI | MR | Zbl

[99] R. Haller-Dintelmann, J. Wiedl, “Kolmogorov kernel estimates for the Ornstein–Uhlenbeck operator”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4:4 (2005), 729–748 | MR | Zbl

[100] E. Harboure, J. L. Torrea, B. Viviani, “On the search for weighted inequalities for operators related to the Ornstein–Uhlenbeck semigroup”, Math. Ann., 318:2 (2000), 341–353 | DOI | MR | Zbl

[101] G. Hargé, “Reinforcement of an inequality due to Brascamp and Lieb”, J. Funct. Anal., 254:2 (2008), 267–300 | DOI | MR | Zbl

[102] Y. Hariya, A unification of the hypercontractivity and its exponential variant of the Ornstein–Uhlenbeck semigroup, 2017, 23 pp., arXiv: 1707.03163

[103] W. Hazod, “Mehler semigroups, Ornstein–Uhlenbeck processes and background driving Lévy processes on locally compact groups and on hypergroups”, Semigroup Forum, 83:2 (2011), 214–240 | DOI | MR | Zbl

[104] C. Hermite, “Sur un nouveau développement en série des fonctions”, C. R. Acad. Sci. Paris, 58 (1864), 93–100; {ØE}uvres, v. 2, Gauthier-Villars, Paris, 1908, 293–308 | DOI | MR | Zbl

[105] E. Hille, “A class of reciprocal functions”, Ann. of Math. (2), 27:4 (1926), 427–464 | DOI | MR | Zbl

[106] E. Hille, “On the oscillation of differential transforms. II. Characteristic series of boundary value problems”, Trans. Amer. Math. Soc., 52:3 (1942), 463–497 | DOI | MR | Zbl

[107] E. Khille, Funktsionalnyi analiz i polugruppy, IL, M., 1951, 636 pp. ; E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., New York, 1948, xii+528 pp. | MR | MR | Zbl

[108] E. Hille, “The abstract Cauchy problem and Cauchy's problem for parabolic differential equations”, J. Analyse Math., 3 (1954), 81–196 | DOI | MR | Zbl

[109] M. Hino, “Existence of invariant measures for diffusion processes on a Wiener space”, Osaka J. Math., 35:3 (1998), 717–734 | MR | Zbl

[110] Y. Inahama, “Meyer's inequality of the type $L(\log L)^\alpha$ on abstract Wiener spaces”, J. Math. Kyoto Univ., 39:1 (1999), 87–113 | DOI | MR | Zbl

[111] M. Jacobsen, “Laplace and the origin of the Ornstein–Uhlenbeck process”, Bernoulli, 2:3 (1996), 271–286 | DOI | MR | Zbl

[112] S. Janson, Gaussian Hilbert spaces, Cambridge Tracts in Math., 129, Cambridge Univ. Press, Cambridge, 1997, x+340 pp. | DOI | MR | Zbl

[113] Z. J. Jurek, “On relations between Urbanik and Mehler semigroups”, Probab. Math. Statist., 29:2 (2009), 297–308 | MR | Zbl

[114] M. Kemppainen, “An $L^1$-estimate for certain spectral multipliers associated with the Ornstein–Uhlenbeck operator”, J. Fourier Anal. Appl., 22:6 (2016), 1416–1430 | DOI | MR | Zbl

[115] E. D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406, 15 pp., arXiv: 1605.00162 | DOI

[116] E. D. Kosov, “Klassy Besova na prostranstve s gaussovskoi meroi”, Dokl. RAN, 478:2 (2018), 133–136

[117] L. Larsson-Cohn, “$L^p$-norms of Hermite polynomials and an extremal problem on Wiener chaos”, Ark. Mat., 40:1 (2002), 133–144 | DOI | MR | Zbl

[118] R. Latała, “Estimates of moments and tails of Gaussian chaoses”, Ann. Probab., 34:6 (2006), 2315–2331 | DOI | MR | Zbl

[119] M. Ledoux, “L'algèbre de Lie des gradients itérés d'un générateur markovien – développements de moyennes et entropies”, Ann. Sci. École Norm. Sup. (4), 28:4 (1995), 435–460 | DOI | MR | Zbl

[120] M. Ledoux, The concentration of measure phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001, x+181 pp. | MR | Zbl

[121] M. Ledoux, I. Nourdin, G. Peccati, “Stein's method, logarithmic Sobolev and transport inequalities”, Geom. Funct. Anal., 25:1 (2015), 256–306 | DOI | MR | Zbl

[122] M. Ledoux, I. Nourdin, G. Peccati, “A Stein deficit for the logarithmic Sobolev inequality”, Sci. China Math., 60:7 (2017), 1163–1180 | DOI | MR

[123] Y. J. Lee, “Fundamental solutions for differential equations associated with the number operator”, Trans. Amer. Math. Soc., 268:2 (1981), 467–476 | DOI | MR

[124] J. Lehec, “Regularization in $L_1$ for the Ornstein–Uhlenbeck semigroup”, Ann. Fac. Sci. Toulouse Math. (6), 25:1 (2016), 191–204 | DOI | MR | Zbl

[125] Z.-H. Li, “Ornstein–Uhlenbeck type processes and branching processes with immigration”, J. Appl. Probab., 37:3 (2000), 627–634 | DOI | MR | Zbl

[126] Z. Li, Z. Wang, “Generalized Mehler semigroups and Ornstein–Uhlenbeck processes arising from superprocesses over the real line”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:4 (2004), 591–605 | DOI | MR | Zbl

[127] L. Liu, Y. Sawano, D. Yang, “Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals”, J. Geom. Anal., 24:2 (2014), 1007–1051 | DOI | MR | Zbl

[128] L. Liu, P. Sjögren, “A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein–Uhlenbeck Poisson kernel”, Rev. Mat. Iberoam., 32:4 (2016), 1189–1210 | DOI | MR | Zbl

[129] L. Liu, D. Yang, “Pointwise multipliers for Campanato spaces on Gauss measure spaces”, Nagoya Math. J., 214 (2014), 169–193 | DOI | MR | Zbl

[130] I. A. López, W. O. Urbina, “On some functions of the Littlewood Paley theory for $\gamma_d$ and a characterization of Gaussian Sobolev spaces of integer order”, Rev. Un. Mat. Argentina, 45:2 (2004), 41–53 | MR | Zbl

[131] I. A. López, W. O. Urbina, “Fractional differentiation for the Gaussian measure and applications”, Bull. Sci. Math., 128:7 (2004), 587–603 | DOI | MR | Zbl

[132] F. Lust-Piquard, “Ornstein–Uhlenbeck semi-groups on stratified groups”, J. Funct. Anal., 258:6 (2010), 1883–1908 | DOI | MR | Zbl

[133] J. Maas, J. van Neerven, “On analytic Ornstein–Uhlenbeck semigroups in infinite dimensions”, Arch. Math. (Basel), 89:3 (2007), 226–236 | DOI | MR | Zbl

[134] J. Maas, J. van Neerven, “On the domain of nonsymmetric Ornstein–Uhlenbeck operators in Banach spaces”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11:4 (2008), 603–626 | DOI | MR | Zbl

[135] J. Maas, J. van Neerven, P. Portal, “Conical square functions and nontangential maximal functions with respect to the Gaussian measure”, Publ. Mat., 55:2 (2011), 313–341 | DOI | MR | Zbl

[136] J. Maas, J. van Neerven, P. Portal, “Whitney coverings and the tent spaces $T^{1,q}(\gamma)$ for the Gaussian measure”, Ark. Mat., 50:2 (2012), 379–395 | DOI | MR | Zbl

[137] P. Malliavin, Stochastic analysis, Grundlehren Math. Wiss., 313, Springer-Verlag, Berlin, 1997, xii+343 pp. | DOI | MR | Zbl

[138] H. Matsumoto, S. Taniguchi, Stochastic analysis. Itô and Malliavin calculus in tandem, Cambridge Stud. Adv. Math., 159, Cambridge Univ. Press, Cambridge, 2017, xii+346 pp. | DOI | MR | Zbl

[139] G. Mauceri, S. Meda, “$BMO$ and $H^1$ for the Ornstein–Uhlenbeck operator”, J. Funct. Anal., 252:1 (2007), 278–313 | DOI | MR | Zbl

[140] G. Mauceri, S. Meda, P. Sjögren, “Sharp estimates for the Ornstein–Uhlenbeck operator”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3:3 (2004), 447–480 | MR | Zbl

[141] G. Mauceri, S. Meda, P. Sjögren, “Endpoint estimates for first-order Riesz transforms associated to the Ornstein–Uhlenbeck operator”, Rev. Mat. Iberoam., 28:1 (2012), 77–91 | DOI | MR | Zbl

[142] G. Mauceri, S. Meda, P. Sjögren, “A maximal function characterization of the Hardy space for the Gauss measure”, Proc. Amer. Math. Soc., 141:5 (2013), 1679–1692 | DOI | MR | Zbl

[143] G. Mauceri, L. Noselli, “Riesz transforms for a non-symmetric Ornstein–Uhlenbeck semigroup”, Semigroup Forum, 77:3 (2008), 380–398 | DOI | MR | Zbl

[144] G. Mauceri, L. Noselli, “The maximal operator associated to a nonsymmetric Ornstein–Uhlenbeck semigroup”, J. Fourier Anal. Appl., 15:2 (2009), 179–200 | DOI | MR | Zbl

[145] F. G. Mehler, “Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung”, J. Reine Angew. Math., 1866:66 (1866), 161–176 | DOI | MR | Zbl

[146] T. Menárguez, S. Pérez, F. Soria, “The Mehler maximal function: a geometric proof of the weak type $1$”, J. London Math. Soc. (2), 61:3 (2000), 846–856 | DOI | MR | Zbl

[147] G. Metafune, “$L^p$-spectrum of Ornstein–Uhlenbeck operators”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 30:1 (2001), 97–124 | MR | Zbl

[148] G. Metafune, D. Pallara, E. Priola, “Spectrum of Ornstein–Uhlenbeck operators in $L^p$ spaces with respect to invariant measures”, J. Funct. Anal., 196:1 (2002), 40–60 | DOI | MR | Zbl

[149] G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt, “The domain of the Ornstein–Uhlenbeck operator on an $L^p$-space with invariant measure”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1:2 (2002), 471–485 | MR | Zbl

[150] P. A. Meyer, “Quelques résultats analytiques sur le semi-groupe d'Ornstein–Uhlenbeck en dimension infinie”, Theory and application of random fields (Bangalore, 1982), Lecture Notes in Control and Inform. Sci., 49, Springer, Berlin, 1983, 201–214 | DOI | MR | Zbl

[151] P. A. Meyer, “Transformations de Riesz pour les lois gaussiennes”, Séminaire de Probabilités XVIII (1982/83), Lecture Notes in Math., 1059, Springer, Berlin, 1984, 179–193 | DOI | MR | Zbl

[152] L. Miclo, “On hyperboundedness and spectrum of Markov operators”, Invent. Math., 200:1 (2015), 311–343 | DOI | MR | Zbl

[153] B. Muckenhoupt, “Poisson integrals for Hermite and Laguerre expansions”, Trans. Amer. Math. Soc., 139 (1969), 231–242 | DOI | MR | Zbl

[154] B. Muckenhoupt, “Equiconvergence and almost everywhere convergence of Hermite and Laguerre series”, SIAM J. Math. Anal., 1:3 (1970), 295–321 | DOI | MR | Zbl

[155] B. Muckenhoupt, “Mean convergence of Hermite and Laguerre series. I, II”, Trans. Amer. Math. Soc., 147:2 (1970), 419–431, 433–460 | DOI | MR | Zbl

[156] W. Myller-Lebedeff, “Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen”, Math. Ann., 64:3 (1907), 388–416 | DOI | MR | Zbl

[157] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80:4 (1958), 931–954 | DOI | MR | Zbl

[158] E. Navas, W. O. Urbina, “A transference result of the $L^p$ continuity from Jacobi Riesz transform to the Gaussian and Laguerre Riesz transforms”, J. Fourier Anal. Appl., 19:5 (2013), 910–942 | DOI | MR | Zbl

[159] J. M. A. M. van Neerven, “Nonsymmetric Ornstein–Uhlenbeck semigroups in Banach spaces”, J. Funct. Anal., 155:2 (1998), 495–535 | DOI | MR | Zbl

[160] J. M. A. M. van Neerven, “Continuity and representation of Gaussian Mehler semigroups”, Potential Anal., 13:3 (2000), 199–211 | DOI | MR | Zbl

[161] J. M. A. M. van Neerven, “Second quantization and the $L^p$-spectrum of nonsymmetric Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:3 (2005), 473–495 | DOI | MR | Zbl

[162] J. van Neerven, P. Portal, “Finite speed of propagation and off-diagonal bounds for Ornstein–Uhlenbeck operators in infinite dimensions”, Ann. Mat. Pura Appl. (4), 195:6 (2016), 1889–1915 | DOI | MR | Zbl

[163] J. M. A. M. van Neerven, E. Priola, “Norm discontinuity and spectral properties of Ornstein–Uhlenbeck semigroups”, J. Evol. Equ., 5:4 (2005), 557–576 | DOI | MR | Zbl

[164] E. Nelson, “Schrödinger particles interacting with a quantized scalar field”, Analysis in function space (Dedham, MA, 1963), M.I.T. Press, Cambridge, MA, 1964, 87–120 | MR | Zbl

[165] E. Nelson, “A quartic interaction in two dimensions”, Mathematical theory of elementary particles (Dedham, MA, 1965), M.I.T. Press, Cambridge, MA, 1966, 69–73 | MR | Zbl

[166] E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, NJ, 1967, iii+142 pp. | MR | Zbl

[167] E. Nelson, “Quantum fields and Markoff fields”, Partial differential equations (Univ. California, Berkeley, CA, 1971), Amer. Math. Soc., Providence, RI, 1973, 413–420 | MR | Zbl

[168] E. Nelson, “The free Markoff field”, J. Funct. Anal., 12:2 (1973), 211–227 | DOI | MR | Zbl

[169] E. V. Nikitin, “Sravnenie dvukh opredelenii klassov Besova na beskonechnomernykh prostranstvakh”, Matem. zametki, 95:1 (2014), 150–153 | DOI | MR | Zbl

[170] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, Berlin, 2006, xiv+382 pp. | DOI | MR | Zbl

[171] D. Otten, “Exponentially weighted resolvent estimates for complex Ornstein–Uhlenbeck systems”, J. Evol. Equ., 15:4 (2015), 753–799 | DOI | MR | Zbl

[172] D. Otten, “The identification problem for complex-valued Ornstein–Uhlenbeck operators in $L^p(\mathbb{R}^d,\mathbb{C}^N)$”, Semigroup Forum, 95:1 (2017), 13–50 | DOI | MR | Zbl

[173] M. Ottobre, G. A. Pavliotis, K. Pravda-Starov, “Some remarks on degenerate hypoelliptic Ornstein–Uhlenbeck operators”, J. Math. Anal. Appl., 429:2 (2015), 676–712 | DOI | MR | Zbl

[174] S. Pérez, F. Soria, “Operators associated with the Ornstein–Uhlenbeck semigroup”, J. London Math. Soc. (2), 61:3 (2000), 857–871 | DOI | MR | Zbl

[175] M. A. Piech, “Parabolic equations associated with the number operator”, Trans. Amer. Math. Soc., 194 (1974), 213–222 | DOI | MR | Zbl

[176] M. A. Piech, “The Ornstein–Uhlenbeck semigroup in an infinite dimensional $L^2$ setting”, J. Funct. Anal., 18:3 (1975), 271–285 | DOI | MR | Zbl

[177] E. Pineda, W. Urbina, “Some results on Gaussian Besov–Lipschitz spaces and Gaussian Triebel–Lizorkin spaces”, J. Approx. Theory, 161:2 (2009), 529–564 | DOI | MR | Zbl

[178] G. Pisier, “Riesz transforms: a simpler analytic proof of P. A. Meyer's inequality”, Séminaire de Probabilités XXII, Lecture Notes in Math., 1321, Springer, Berlin, 1988, 485–501 | DOI | MR | Zbl

[179] H. Pollard, “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63:2 (1948), 355–367 | DOI | MR | Zbl

[180] P. Portal, “Maximal and quadratic Gaussian Hardy spaces”, Rev. Mat. Iberoam., 30:1 (2014), 79–108 | DOI | MR | Zbl

[181] M. Röckner, F.-Y. Wang, “Harnack and functional inequalities for generalized Mehler semigroups”, J. Funct. Anal., 203:1 (2003), 237–261 | DOI | MR | Zbl

[182] B. Schmuland, W. Sun, “On the equation $\mu_{t+s}=\mu_s*T_s\mu_t$”, Statist. Probab. Lett., 52:2 (2001), 183–188 | DOI | MR | Zbl

[183] E. Schrödinger, “Quantisierung als Eigenwertproblem. (Zweite Mitteilung.)”, Ann. Phys. (4), 79(384):6 (1926), 489–527 ; E. Shrëdinger, “Kvantovanie kak zadacha o sobstvennykh znacheniyakh”, Izbrannye trudy po kvantovoi mekhanike, Nauka, M., 1976, 21–51 | Zbl

[184] I. Shigekawa, “Existence of invariant measures of diffusions on an abstract Wiener space”, Osaka J. Math., 24:1 (1987), 37–59 | MR | Zbl

[185] I. Shigekawa, “Sobolev spaces over the Wiener space based on an Ornstein–Uhlenbeck operator”, J. Math. Kyoto Univ., 32:4 (1992), 731–748 | DOI | MR | Zbl

[186] I. Shigekawa, “The Meyer inequality for the Ornstein–Uhlenbeck operator in $L^1$ and probabilistic proof of Stein's $L^p$ multiplier theorem”, Trends in probability and related analysis (Taipei, 1996), World Sci. Publ., River Edge, NJ, 1997, 273–288 | MR | Zbl

[187] I. Shigekawa, “Orlicz norm equivalence for the Ornstein–Uhlenbeck operator”, Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math., 41, Math. Soc. Japan, Tokyo, 2004, 301–317 | MR | Zbl

[188] I. Shigekawa, Stochastic analysis, Transl. Math. Monogr., 224, Iwanami Series in Modern Mathematics, Amer. Math. Soc., Providence, RI, 2004, xii+182 pp. | MR | Zbl

[189] B. Simon, R. Høegh-Krohn, “Hypercontractive semigroups and two dimensional self-coupled Bose fields”, J. Funct. Anal., 9:2 (1972), 121–180 | DOI | MR | Zbl

[190] P. Sjögren, “On the maximal function for the Mehler kernel”, Harmonic analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, 73–82 | DOI | MR | Zbl

[191] P. Sjögren, “Operators associated with the Hermite semigroup – a survey”, J. Fourier Anal. Appl., 3, Special issue (1997), 813–823 | DOI | MR | Zbl

[192] P. Sjögren, “Maximal operators related to the Ornstein–Uhlenbeck semigroup with complex time parameter”, J. Funct. Anal., 237:2 (2006), 675–688 | DOI | MR | Zbl

[193] P. Sjögren, F. Soria, “Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures”, Adv. Math., 181:2 (2004), 251–275 | DOI | MR | Zbl

[194] M. Smoluchowski, “Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen”, Phys. Z., 17 (1916), 557–571, 585–599

[195] M. Sobajima, T. Yokota, “A direct approach to generation of analytic semigroups by generalized Ornstein–Uhlenbeck operators in weighted $L^p$ spaces”, J. Math. Anal. Appl., 403:2 (2013), 606–618 | DOI | MR | Zbl

[196] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Information and Control, 2:2 (1959), 101–112 | DOI | MR | Zbl

[197] E. M. Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Ann. of Math. Stud., 63, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1970, viii+146 pp. | DOI | MR | Zbl

[198] K. Stempak, J. L. Torrea, “Poisson integrals and Riesz transforms for Hermite function expansions with weights”, J. Funct. Anal., 202:2 (2003), 443–472 | DOI | MR | Zbl

[199] J. Teuwen, “A note on Gaussian maximal functions”, Indag. Math. (N. S.), 26:1 (2015), 106–112 | DOI | MR | Zbl

[200] J. Teuwen, “On the integral kernels of derivatives of the Ornstein–Uhlenbeck semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 19:4 (2016), 1650030, 13 pp. | DOI | MR | Zbl

[201] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes, 42, Princeton Univ. Press, Princeton, NJ, 1993, xviii+195 pp. | MR | Zbl

[202] G. E. Uhlenbeck, L. S. Ornstein, “On the theory of Brownian motion”, Phys. Rev. (2), 36 (1930), 823–841 | DOI | Zbl

[203] Y. Umemura, “On the infinite dimensional Laplacian operator”, J. Math. Kyoto Univ., 4:3 (1965), 477–492 | DOI | MR | Zbl

[204] W. Urbina, “On singular integrals with respect to the Gaussian measure”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 17:4 (1990), 531–567 | MR | Zbl

[205] W. O. Urbina, “Semigroups of operators for classical orthogonal polynomials and functional inequalities”, Orthogonal families and semigroups in analysis and probability, Sémin. Congr., 25, Soc. Math. France, Paris, 2012, 285–383 | MR | Zbl

[206] F.-Y. Wang, “Spectral gap for hyperbounded operators”, Proc. Amer. Math. Soc., 132:9 (2004), 2629–2638 | DOI | MR | Zbl

[207] F.-Y. Wang, Harnack inequalities for stochastic partial differential equations, SpringerBriefs Math., Springer, New York, 2013, x+125 pp. | DOI | MR | Zbl

[208] F.-Y. Wang, “Criteria of spectral gap for Markov operators”, J. Funct. Anal., 266:4 (2014), 2137–2152 | DOI | MR | Zbl

[209] M. C. Wang, G. E. Uhlenbeck, “On the theory of the Brownian motion. II”, Rev. Modern Phys., 17 (1945), 323–342 | DOI | MR | Zbl

[210] S. Wang, H. Zhou, P. Li, “Local Muckenhoupt weights on Gaussian measure spaces”, J. Math. Anal. Appl., 438:2 (2016), 790–806 | DOI | MR | Zbl

[211] S. Watanabe, “Fractional order Sobolev spaces on Wiener space”, Probab. Theory Related Fields, 95:2 (1993), 175–198 | DOI | MR | Zbl

[212] G. N. Watson, “Notes on generating functions of polynomials: (2) Hermite polynomials”, J. London Math. Soc., 8:3 (1933), 194–199 | DOI | MR | Zbl

[213] F. B. Weissler, “Logarithmic Sobolev inequalities for the heat-diffusion semigroup”, Trans. Amer. Math. Soc., 237 (1978), 255–269 | DOI | MR | Zbl

[214] B. Wróbel, “Joint spectral multipliers for mixed systems of operators”, J. Fourier Anal. Appl., 23:2 (2017), 245–287 | DOI | MR | Zbl