Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 175-177
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2018_73_1_a6,
     author = {O. I. Mokhov and N. A. Strizhova},
     title = {Classification of the associativity equations possessing a {Hamiltonian} structure of {Dubrovin{\textendash}Novikov} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {175--177},
     year = {2018},
     volume = {73},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/}
}
TY  - JOUR
AU  - O. I. Mokhov
AU  - N. A. Strizhova
TI  - Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 175
EP  - 177
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/
LA  - en
ID  - RM_2018_73_1_a6
ER  - 
%0 Journal Article
%A O. I. Mokhov
%A N. A. Strizhova
%T Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 175-177
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/
%G en
%F RM_2018_73_1_a6
O. I. Mokhov; N. A. Strizhova. Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 175-177. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/

[1] O. Mokhov, Topics in topology and mathematical physics, Amer. Math. Soc., Providence, RI, 1995, 121–151 | DOI | MR | Zbl

[2] O. I. Mokhov, UMN, 53:3(321) (1998), 85–192 | DOI | DOI | MR | Zbl

[3] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego pril., 30:3 (1996), 62–72 ; (1995), 15 pp., arXiv: hep-th/9505180 | DOI | DOI | MR | Zbl

[4] B. Dubrovin, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; Preprint SISSA-89/94/FM, SISSA, Trieste, 1994, 229 pp.; 1994, 204 pp., arXiv: hep-th/9407018 | DOI | MR | Zbl

[5] O. I. Bogoyavlenskij, A. P. Reynolds, Regul. Chaotic Dyn., 15:4-5 (2010), 431–439 | DOI | MR | Zbl