Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 175-177
@article{RM_2018_73_1_a6,
author = {O. I. Mokhov and N. A. Strizhova},
title = {Classification of the associativity equations possessing a {Hamiltonian} structure of {Dubrovin{\textendash}Novikov} type},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {175--177},
year = {2018},
volume = {73},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/}
}
TY - JOUR AU - O. I. Mokhov AU - N. A. Strizhova TI - Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 175 EP - 177 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/ LA - en ID - RM_2018_73_1_a6 ER -
%0 Journal Article %A O. I. Mokhov %A N. A. Strizhova %T Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 175-177 %V 73 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/ %G en %F RM_2018_73_1_a6
O. I. Mokhov; N. A. Strizhova. Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 175-177. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a6/
[1] O. Mokhov, Topics in topology and mathematical physics, Amer. Math. Soc., Providence, RI, 1995, 121–151 | DOI | MR | Zbl
[2] O. I. Mokhov, UMN, 53:3(321) (1998), 85–192 | DOI | DOI | MR | Zbl
[3] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego pril., 30:3 (1996), 62–72 ; (1995), 15 pp., arXiv: hep-th/9505180 | DOI | DOI | MR | Zbl
[4] B. Dubrovin, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; Preprint SISSA-89/94/FM, SISSA, Trieste, 1994, 229 pp.; 1994, 204 pp., arXiv: hep-th/9407018 | DOI | MR | Zbl
[5] O. I. Bogoyavlenskij, A. P. Reynolds, Regul. Chaotic Dyn., 15:4-5 (2010), 431–439 | DOI | MR | Zbl